The *Guide to Preventing Aquatic Invasive Species (AIS) Transport by Wildland Fire Operations* is a product of, and maintained by, the Invasive Species Subcommittee (ISSC), a component of the Equipment Technology Committee of the National Wildfire Coordinating Group (NWCG). The ISSC provides national leadership in the prevention of invasive species transport by wildland fire mobile equipment and related vehicles, and its primary objectives are to:

- Develop and disseminate practical standards, guidelines, best practices, and recommendations to prevent the spread of invasive species.
- Integrate new and evolving information from the natural resource management community into the invasive species control effort.
- Evaluate and recommend wildland fire and support vehicle utilization and/or decontamination techniques, equipment, or products to minimize invasive species transport.

Questions and comments may be emailed to: BLM_FA_NWCG_Products@blm.gov.

This publication is available electronically from the NWCG Web site at: https://www.nwcg.gov/publications/444.

Previous editions: First Edition

The National Wildfire Coordinating Group (NWCG) has approved the contents of this publication for the guidance of its member agencies and is not responsible for the interpretation or use of this information by anyone else.

NWCG’s intent is to specifically identify all copyrighted content used in NWCG publications. All other NWCG information is in the public domain. Use of public domain information, including copying, is permitted. Use of NWCG information within another document is permitted, if NWCG information is accurately credited to the NWCG. The NWCG logo may not be used except on NWCG authorized information. “National Wildfire Coordinating Group”, “NWCG”, and the NWCG logo are trademarks of the National Wildfire Coordinating Group.

The use of trade, firm, or corporation names or trademarks in this publication is for the information and convenience of the reader and does not constitute an endorsement by the National Wildfire Coordinating Group or its member agencies of any publication or service to the exclusion of others that may be suitable.
Acknowledgements

The following members of the Invasive Species Subcommittee of the Equipment Technology Committee/National Wildfire Coordination Group (NWCG) were instrumental in the development of this Guide:

Current Membership

Julie Laufmann – Chair; USDA Forest Service
Cynthia Tait – Co-chair; USDA Forest Service
Lou Ballard – Primary member; USDI Fish and Wildlife Service
Justin Boeck – Advisor; USDI Bureau of Land Management
Myron Chase – Primary member; USDI National Park Service
Matt Cnudde – Primary member; USDA Forest Service
Myron Hotinger – Primary member; previous chair; Bureau of Indian Affairs
Richard Schwab – Advisor; USDI National Park Service
Clint Sestrich – Advisor; USDA Forest Service
David Shy – CAL FIRE
Kristy Swartz – Primary member; USDI Bureau of Land Management

Previous Membership

Ryan Becker – Chair; USDA Forest Service
Tate Fischer – USDI Bureau of Land Management

Other Reviewers

NWCG National Interagency Aviation Committee (NIAC)
NWCG Equipment Technical Committee, Mobile Equipment Subcommittee
Sam Wu and Ralph Gonzales – USDA Forest Service, San Dimas Technology and Development Center
Todd Neel – USDA Forest Service
Cody Peel – USDA Forest Service
Terry Swinscoe – USDA Forest Service
Robert Button – SEI Industries Inc.

Thanks to San Dimas Technology and Development Center (SDTC) staff members Carl Schaefer and Armando Sanchez for their assistance in foot valve and engine tests. Also, thanks to Rocky Mountain and Redmond Cache staff Marcus Medina and Eve Ponder for providing footvalves for testing.
Table of Contents

Chapter 1 Purpose... 4

Chapter 2 Aquatic Invasive Species and Why We Care.. 4
WHAT ARE THEY?.. 4
WHY DO WE CARE?... 4
WHERE DO AIS COME FROM?... 4
HOW DO AIS GET MOVED AROUND?... 4
HOW IS FIRE EQUIPMENT AFFECTED BY AIS?.. 5

Chapter 3 Guidelines and Best Management Practices .. 5
GENERAL PREVENTION... 5

Chapter 4 Ground Operations... 6
WATER HANDLING OPERATIONS.. 6
DECONTAMINATING GROUND EQUIPMENT.. 7

Chapter 5 Aviation Operations... 8
GENERAL PREVENTION... 8
DECONTAMINATING AVIATION EQUIPMENT... 8
DECONTAMINATING ACCESSIBLE INTERNAL TANKS.. 9

Chapter 6 AIS Prevention for Resource Advisors... 9
LOCATING AQUATIC INVASIVE SPECIES .. 9
IDENTIFYING HIGH PRIORITY AQUATIC RESOURCES AT RISK.. 10
UNDERSTAND AIS AND HOW FIRE ACTIVITIES CAN SPREAD THEM... 10
KNOW THE BMPS AND DECONTAMINATION PROTOCOLS.. 11
INTERNAL ENGINE TANKS AND DRAFTING METHODS.. 11
PREPAREDNESS: DECONTAMINATION PERSONNEL, EQUIPMENT, AND SUPPLIES....................... 12

Appendix A: Decontaminating with Chemical Disinfectants... 13
TO DECONTAMINATE GEAR WITH QUAT DISINFECTANTS:.. 13
TO DECONTAMINATE GEAR WITH CHLORINE BLEACH:... 14
CHEMICAL DISPOSAL.. 14
SUPPLY SOURCES.. 14

Appendix B: Field Testing Foot Valves for Leaks... 16
BACKGROUND INFORMATION.. 16
EQUIPMENT LIST... 16
LOW PRESSURE TEST (3-5 PSI)... 17
HIGH PRESSURE TEST (130 PSI)... 17

Appendix C: Job Safety Risk Assessment Templates for Disinfecting Field Gear.............................. 18
OPERATING HOT WATER PRESSURE WASHERS ... 19
DISINFECTING FIELD GEAR WITH QUATERNARY AMMONIUM COMPOUNDS.............................. 23
DISINFECTING FIELD GEAR WITH CHLORINE BLEACH.. 27
Appendix D: AQUATIC INVASIVE SPECIES of Concern to Firefighters and Disinfection Methods

- ZEBRA & QUAGGA MUSSELS ... 32
- ASIAN CLAM .. 35
- NEW ZEALAND MUDSNAIL ... 37
- MALAYSIAN TRUMPET SNAIL ... 40
- ORIENTAL MYSTERY SNAIL ... 42
- FAUCET SNAIL .. 44
- SPINY WATER FLEA ... 45
- DIDYMO ... 47
- CHYTRID FUNGUS ... 49
- WHIRLING DISEASE ... 52
- VIRAL HEMORRHAGIC SEPTICEMIA ... 54
- SPRING VIREMIA OF CARP .. 56
- PORT ORFORD CEDAR ROOT DISEASE AND SUDDEN OAK DEATH ... 58
- AQUATIC INVASIVE PLANTS .. 60
Chapter 1 Purpose

The *Guide to Preventing Aquatic Invasive Species Transport by Wildland Fire Operations* is intended to help wildland firefighters avoid the spread of aquatic invasive species. The *Guide* includes:

- Best management practices (BMPs) to prevent contact with and spread of invasive species,
- The best procedures for decontaminating ground and aviation equipment,
- AIS prevention recommendations for resource advisors, and
- AIS of concern to firefighters nationwide and disinfection methods.

Chapter 2 Aquatic Invasive Species and Why We Care

WHAT ARE THEY?
Aquatic invasive species are harmful, non-native plants, animals, and microorganisms living in aquatic habitats that damage ecosystems or threaten commercial, agricultural, and recreational activities.

WHY DO WE CARE?
Firefighter and public safety is our first priority, but aquatic invasive plants and animals pose a risk to native species, hydropower facilities and water supplies, and to firefighting equipment. Avoidance and decontamination can prevent the spread of these organisms and help assure that firefighting equipment remains operational. See *Appendix D: Aquatic Invasive Species of Concern to Firefighters* for information on the species firefighting resources are most likely to encounter, including their distributions, disinfection methods, and references.

WHERE DO AIS COME FROM?
Aquatic invasive species can be found in the untreated water sources used in firefighting operations, either a natural source (a river or lake) or a human-made water body (a reservoir, canal, or stock tank) that has not been treated for municipal use or human consumption. Municipal water distributed via hydrants is not considered a reservoir of invasive species. Untreated water sources may harbor a variety of AIS, including quagga and zebra mussels, New Zealand mudsnails, whirling disease, didymo (*or rock snot*), and plants such as hydrilla, Eurasian watermilfoil, and giant salvinia, as well as many vertebrate species. In some cases, the occurrence of aquatic invasive species in a water body is well documented, but for many western waters such information is incomplete or nonexistent.

HOW DO AIS GET MOVED AROUND?
In wildland fire management, AIS can be transported via firefighting equipment that contacts or transports untreated water, such as portable pumps (including floatable pumps), portable tanks, helicopter buckets, and internal tanks of fire engines, water tenders, helicopters, and fixed wing aircraft. Typically, components of the equipment that cannot be drained and dried completely are most likely to harbor invasive species and thus serve as vectors. Residual water left in incompletely drained tanks in equipment moved between fire incidents is of special concern: quagga mussel larvae are able to survive 5 days in summer and 28 days in autumn in residual water contained within undrained boats (*Appendix D*, Choi et al. 2013), a time interval which is well within the re-deployment period for most firefighting equipment.
There are many possible invasion pathways for AIS within the context of wildland fire incident response. During an incident, untreated water is routinely moved between watersheds and sometimes between basins. Typically, large water bodies, such as reservoirs, serve as primary sources to fill various types of firefighting equipment, which then transport and disperse that water to other parts of the fire. In many fire incidents, helicopters equipped with snorkels and internal tanks or buckets draft or dip from untreated water sources, then may draft from a new source with contaminated gear.

HOW IS FIRE EQUIPMENT AFFECTED BY AIS?

Invasives such as zebra mussels and New Zealand mudsnails may adhere to the surfaces of tanks, pumps, and hoses. They can be transmitted to uncontaminated water sources if this equipment is not drained and dried completely or decontaminated.

Chapter 3 Guidelines and Best Management Practices

GENERAL PREVENTION

Preventing exposure to AIS through best management practices is the easiest and simplest way to control their spread.

- Map the distribution of aquatic invasive organisms in watersheds where the operation will take place (Figure 1). See Chapter 6 for sources for maps or GIS layers showing locations of AIS infested waters. You can never be certain that invasives are NOT present, but at least you will know ahead of time where they ARE known to be present.

- Fill tanks from municipal water sources whenever possible.

- When possible, avoid drafting from waterbodies with known infestations of aquatic invasive species.

- Avoid transferring water between drainages or between unconnected waters within the same drainage. Do not dump water from one waterbody (e.g., stream, lake, or reservoir) into another waterbody. Do not allow water from fold-a-tanks or pumpkins to drain into nearby waterways if the fold-a-tank was filled with water from a different drainage. Dispose of excess water over uplands.

- Avoid sucking organic and bottom material into water intakes when drafting from shallow water. Use screens. If collapsible tanks can be filled with municipal water, draft from those tanks instead of untreated water sources.

- Avoid entering (driving through) water bodies or wet areas when possible.

- Remove all plant parts and mud from external surfaces of gear and equipment after an operational period.

- Avoid obtaining water from multiple sources during a single operational period unless drafting/dipping equipment is decontaminated or changed out with clean equipment between sources.
If contamination of equipment with untreated water or mud/plants is unavoidable, see “Decontaminating Ground Equipment” and “Decontaminating Aviation Equipment”, below.

Chapter 4 Ground Operations

Of great concern for ground equipment is the possibility that residual tank water contaminated with AIS could be transferred to uncontaminated waterbodies during the drafting process. However, if proper drafting and water handling BMPs are used and foot valves are working correctly, there is low risk that contaminated tank water could "seep" into the drafting water source.

WATER HANDLING OPERATIONS

- When possible, fill engines from a municipal hydrant, a water tender, or from a pump assigned to a single drafting source.

- When spraying water to suppress a fire, avoid application of untreated water into local water bodies (ponds, lakes, rivers, streams, wetlands, seeps, or springs), especially if the water in the tank came from a different watershed (Figure 2). Water delivery equipment and accessories (e.g., fireline hoses, wye valves, nozzles) that do not transfer tank water to waterbodies do not need to be decontaminated.

- To prevent leakage and to maintain the prime, be sure that foot valves are screwed snugly onto drafting hoses and are fully closing and not leaking before and during drafting (Figure 3). If foot valves are leaking, refrain from drafting and replace foot valve with one that is operating properly. See Appendix B for methods to field test foot valves for leakage.

Figure 2. Water delivery equipment is low risk if contaminated water is pumped onto a fire and not applied to another waterbody.

Figure 3. Be sure foot valves are not leaking before and during drafting.
• **Priming the engine pump for drafting** —
To minimize the potential for engine water leakage through the foot valve, **prime with water from the drafting source rather than using water from the engine tank** (Figure 4). When priming by filling the drafting hose with a bucket, first make sure that the bucket is clean so that it does not transfer AIS. Additionally, don’t leave draft hose full with foot valve engaged and submerged in water source when not pumping.

• Elevate foot valves above the bottom of the waterbody for clean, sediment-free operation—for example, duct tape foot valve to a shovel or place the valve in a hard hat or bucket.

• Remove water drain plug/s from self-priming pumps (e.g., trash pumps) to empty pump housing before moving to a new waterbody.

• When filling the engine tank, avoid tank overflow into the water source.

DECONTAMINATING GROUND EQUIPMENT

• Before moving to a new water source (in a different watershed), decontaminate all external and internal surfaces of foot valve and draft hose. Three options are:
 - Power wash with hot water (140° F, allow spray to contact surfaces for 2 minutes) using a hot pressure washer (e.g., a ‘Hotsy’).
 - Dry the gear in the hot sun until completely dry to the touch (sunlight intensifies the decontamination process).
 - Use a chemical solution (see *Appendix A: Decontaminating with Chemical Disinfectants*). Surfaces of the drafting hose and foot valve can be decontaminated by coiling and submerging in a bucket filled with disinfectant (Figure 5) or by spray application with a backpack pump or a large spray bottle.

• Consider carrying spare, clean, dry draft hoses and foot valves to switch out with used ones when moving to a new water source.
Chapter 5 Aviation Operations

Aircraft such as air tankers and single engine air tankers, which use water from municipal sources, are unlikely to encounter AIS and are not addressed here. All other aircraft utilize untreated water and have the potential to transfer AIS.

GENERAL PREVENTION

- Avoid dipping or scooping water from multiple water sources within the same operational period to minimize cross-contamination of water sources.
- If possible, use water dipped from the same drainage that it will be dropped in. This can be accomplished by setting up heliwells (portable tanks/pumpkins) filled from small streams with Mark III pumps.
- Use deeper (blue) water whenever possible. Avoid areas that will intake mud or plants.
- Switch out a contaminated helicopter bucket with a clean bucket before moving to a new water source. Alternating used (possibly contaminated) helicopter buckets with spare (clean) buckets can save time and increase efficiency, as the first bucket can be decontaminated while the second bucket is being used.
- Helicopter snorkels do not need to be primed with either source or tank water, so there is no risk of residual tank water entering a water source during drafting operations (Figure 6). However, snorkel ends and foot valves that encounter untreated water must still be decontaminated.

DECONTAMINATING AVIATION EQUIPMENT

Chemicals such as bleach and quaternary ammonium compounds do not meet corrosion requirements for aluminum and shall not be used on aircraft fuselages or water delivery components such as helicopter buckets and footvalves.

- Visually inspect water handling equipment (snorkel hoses, pumps, foot valves, screens, buckets, intakes and tanks) for mud, debris, or plant parts daily, during maintenance, and after every water dropping mission, when possible. Remove plants and mud from external surfaces.
- When contact with untreated water has occurred or is suspected, decontamination is needed. Thorough drying in the hot sun alone is an easy and effective decontaminating method, though required drying times can vary with equipment materials (e.g., metal, rubber, fabric). Dry gear in the sun until it’s completely dry to the touch. Drying may not be possible for a quick turnaround, so carry spare, clean gear to switch out with wet gear.
- Alternatively, clean and decontaminate accessible, exposed surfaces by power washing with hot water (140°F) for 2 minutes before moving to new, unconnected water sources or new incidents. If a helicopter bucket has a butyl (rubber) valve seal, avoid prolonged application of hot water spray to the seal to prevent softening of this vulnerable material. Power washing greatly reduces the likelihood that any target aquatic invasives are present.
• When hot water (140°F) is not available or practical, use potable water to flush invasive species from the system. Ensure that run-off cannot reach a water source.

DECONTAMINATING ACCESSIBLE INTERNAL TANKS

Accessible tanks have doors or other openings that allow access for cleaning. Scooper aircraft (CL215 or CL415, and Fire Boss), Sky Crane helicopters (CH-54/S-64), and other tanked helicopters are examples of aircraft with accessible tanks.

• Decontaminate internal tanks by spraying the internal surface with hot water (140°F) from a hot pressure washer (e.g., a ‘Hotsy’). Allow spray to contact surface for at least 2 minutes. This method is recommended for scooper and Fire Boss aircraft (Figure 7). Tanked helicopters have tank doors that open widely from below for easy tank access and draining. Hot water spray or thoroughly dry these surfaces.

Chapter 6 AIS Prevention for Resource Advisors

During fire events, Resource Advisors (READs) and Resource Advisors, Fireline (REAFs) play an integral part in guidance, facilitation of decontamination actions, acquisition of equipment, and education. Whether the READs have local knowledge or have been assigned to a fire from outside the area, they are a critical factor in reducing the risk of AIS spread.

LOCATING AQUATIC INVASIVE SPECIES

Maps of known AIS infestations are a valuable tool for READs to communicate which waterbodies to avoid for drafting (Figure 1, pg. 6). Currently there is no nationwide, central repository of maps or geospatial data identifying AIS infested waters, but regional or local information may be available. Ideally, mapping occurrence of AIS would be done as a preseason activity involving local aquatic specialists and fire staff. At that time, maps could be prepared and distributed to local fire staff who could then provide a handoff packet (if needed) during large fire events or for incoming personnel unfamiliar with the area. Bear in mind that many waterways have not been surveyed and the presence of aquatic invasive species may be unknown, which is why any source of untreated water could harbor AIS.

Maps or GIS layers showing locations of AIS infested waters for resource advising on a fire might be obtained from the following sources:

• Local agency administrators or aquatic specialists may have information. Sometimes local land management offices maintain AIS data and prepare maps as part of preseason planning.

• A number of agencies or States may also have AIS location data. These include:
 o United States Geological Survey (USGS) Nonindigenous Aquatic Species database (nationwide, does not include pathogens): https://nas.er.usgs.gov/
Identifying High Priority Aquatic Resources at Risk

In addition to locating known AIS infestations, READS should also take into consideration which waters have high resource values for protection from an unintended AIS transfer. These values include waterbodies with native fish populations, recreational fisheries, municipal and hydropower water sources, or pristine high elevation lakes. As with AIS positive waters, high priority aquatic resources should be mapped prior to the fire season, and included in AIS prevention communications to fire managers.

Understand AIS and How Fire Activities Can Spread Them

Educating yourself and others regarding AIS and their dangers is likely one of the best management tools available. AIS encompass many species, from mollusks to plants to pathogens, and can be transported and decontaminated in a variety of ways. (See Appendix D: Aquatic Invasive Species of Concern to Firefighters and Disinfection Methods for descriptions and disinfection methods for AIS that may be of concern during water handling fire operations.) In addition, AIS educational materials are available on State and federal agency invasive species websites.

AIS are most likely to be transported via firefighting equipment that contacts or conveys untreated water, such as portable pumps (including floatable pumps), portable tanks, helicopter buckets, and internal tanks of fire engines, water tenders, helicopters, and fixed wing aircraft. Residual water left in incompletely drained tanks in equipment moved between fire incidents can harbor AIS, and quagga mussel larvae are able to survive for days in residual water contained within undrained boats. However, BMPs targeting drafting procedures greatly reduce AIS risk from residual tank water.
KNOW THE BMPS AND DECONTAMINATION PROTOCOLS

Study the General Prevention best management practices, which are simple operational techniques to prevent contact with AIS at the outset. For example, prudent prevention practices would be avoiding transferring water between drainages, or not sucking organic and bottom material into water intakes when drafting. Also, educate yourself on methods of decontamination, and emphasize flushing with pressurized hot water, drying of equipment, and use of spare gear over using chemical disinfectants. Note that for hot water decontamination, the recommended temperature is 140°F with a contact time of 2 minutes. According to research studies, this combination of temperature and contact duration will kill the majority of AIS of concern to fire operations (See Appendix D). For the hardier species, such as whirling disease, the flushing action of pressurized hot water greatly decreases the likelihood of retention on equipment.

Refer people who do not know how to decontaminate their equipment to someone who can either do the work or train them how. Be knowledgeable of contract language associated with equipment cleaning and decontamination requirements (e.g., scooper aircraft and helicopters). Read the “Operational Guidelines for Aquatic Invasive Species” section of the Interagency Standards for Fire and Fire Aviation Operations (the Red Book) at: https://www.nifc.gov/policies/pol_ref_redbook.html. Talk to helicopter managers and air operations to see if they need additional information or equipment.

INTERNAL ENGINE TANKS AND DRAFTING METHODS

Of great concern in the past was the possibility that residual engine or helicopter tank water contaminated with AIS could be transferred to uncontaminated waterbodies during the drafting process. However, if proper drafting and water handling BMPs are used and foot valves are working correctly (see Appendix B), there is low risk that contaminated tank water could "seep" into the drafting water source.

By focusing on drafting techniques rather than the difficult decontamination of internal tanks, which may or may not contain AIS, we can abolish the use of large volumes of chemical disinfectants and instead rely on procedure. Priming the engine pump with source water and not using tank water to initiate the prime eliminates the possibility of residual tank water entering a new waterbody through a leaky foot valve. Offer to provide information or assist engine operators on how to perform a foot valve test for leakage. Ask them if they are able to prime their pumps with source, or stream, water rather than from the engine tank. (See Appendix B for methods to field test foot valves for leakage.)

Helicopter snorkels do not need to be primed with either source or tank water, so there is no risk of residual tank water entering a water source during helicopter drafting operations.

Minimal risk occurs when contaminated tank water is applied to fire and upland areas so long as it does not enter other waterbodies. Water delivery equipment and accessories (e.g., fireline hoses, wye valves, nozzles) that do not transfer tank water to waterbodies do not need to be disinfected.

Familiarize yourself with situations where risk of AIS transfer is highest, such as gear that contacts untreated water and later is moved to new watersheds or waterbodies. Or a helicopter bucket that has snagged water plants and mud. Be able to discuss these scenarios so that others understand that the objective is to reduce the possibility of moving AIS from one source to another.

Serve as a problem solver, not an enforcer of rules and practices! Use your expertise as a READ to explain the BMPs and why they are important for ecosystem health.
PREPAREDNESS: DECONTAMINATION PERSONNEL, EQUIPMENT, AND SUPPLIES

There is typically a lag time between the onset of a fire incident and the arrival of decontamination equipment, such as heated pressure washers. Once equipment arrives, there may not be personnel available that are trained in its safe operation. The following measures are recommended to ensure your unit is properly prepared to prevent the spread of AIS during fire operations:

- Secure heated pressure washing equipment for use on your unit or the larger area in which you work. If you are unable to purchase equipment, have contact information at the ready for local contractors, rental shops, and chemical supply houses.

- For ground operations, ensure access to disinfectants for instances where heated pressure washing equipment is not available or there is insufficient time to thoroughly dry equipment. Know which disinfectants to provide to engine operators (see Appendix A).

- Train personnel in the safe implementation of decontamination protocols and operation of equipment. Develop Risk Assessments or Job Hazard Analyses for each specific decontamination task or piece of equipment. See Appendix C for Risk Assessment templates for disinfecting fire equipment: “Operating Hot Water Pressure Washers”; “Disinfecting Field Gear With Quaternary Ammonium Compounds”; and “Disinfecting Field Gear With Chlorine Bleach”. Modify these to fit your particular situation and field unit.

- Secure all necessary Personal Protective Equipment (PPE) for pressure washing and use of chemicals, if appropriate.
Appendix A: Decontaminating with Chemical Disinfectants

Chemical disinfectants, though effective, can be hazardous, corrosive, and difficult to dispose of. However, when other decontamination methods, such as hot water or drying, are not options, chemicals can be used for small gear items ONLY (e.g., footvalves, draft hoses, or screens) in volumes appropriate for small buckets. Bleach and quaternary ammonium compounds do not meet corrosion requirements for aluminum and shall not be used on aircraft fuselages or aerial water delivery components such as helicopter buckets and snorkels.

Quaternary ammonium compounds (quats), common cleaning agents used in homes and hospitals, are safe for MOST gear and equipment when used at recommended concentrations and rinsed. Chlorine products are not emphasized for use in these guidelines because of their corrosiveness to fabrics, plastics, rubber, and metal and their limited effectiveness against snails. However, bleaches are extremely effective against certain invasive organisms (e.g., chytrid fungus, Port Orford cedar root disease) and are relatively inexpensive. (See Appendix D: Aquatic Invasive Species of Concern to Firefighters and Disinfection Methods.)

TO DECONTAMINATE GEAR WITH QUAT DISINFECTANTS:

The quaternary ammonium formulations Super HDQ® and Green Solutions High Dilution256® (which replaces the discontinued Sparquat 256®) were recently (see Appendix D, Stout et al. 2016) found to be most effective against a variety of AIS. Green Solutions Neutral Disinfectant® is a less concentrated version of Green Solutions 256®. These formulations can be used at concentrations according to their labels (see below). Soak gear in a bucket for 10 minutes. Alternatively, gear may be disinfected by spraying with quat from a backpack weed sprayer or spray bottle. Afterwards, rinse gear thoroughly in clean water. Quat compounds are highly toxic to aquatic organisms but are immobile in soil. Keep effluent, containing this product, at least 100 feet from lakes, ponds, streams or other waters. Do NOT allow product to enter storm drains, lakes, streams, or other waterbodies.

<table>
<thead>
<tr>
<th>Volume of Tap Water</th>
<th>Super HDQ®</th>
<th>Green Solutions Neutral Disinfectant High Dilution 256®</th>
<th>Green Solutions Neutral Disinfectant® (this product is a lower concentration)</th>
<th>Soak Time</th>
<th>Spray Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 gallon water</td>
<td>½ oz</td>
<td>½ oz</td>
<td>2 oz</td>
<td>10 min</td>
<td>5 sec spray; let stand 10 minutes; rinse</td>
</tr>
<tr>
<td>1 gallon water</td>
<td>1 Tbsp.</td>
<td>1 Tbsp.</td>
<td>4 Tbsp.</td>
<td>10 min</td>
<td>5 sec spray; let stand 10 minutes; rinse</td>
</tr>
</tbody>
</table>
TO DECONTAMINATE GEAR WITH CHLORINE BLEACH:

Bleaches are corrosive to canvas, gaskets, and metal and have limited effectiveness against snails. However, bleaches are extremely effective against other invasive organisms, especially pathogens, and the bleach concentration below has been found to be effective for chytrid fungus and other AIS (See Appendix D: Johnson et al. 2003). Soak gear in a bucket for 10 minutes. Afterwards, rinse gear thoroughly in clean water.

<table>
<thead>
<tr>
<th>Volume of Tap Water</th>
<th>“Regular Clorox® Bleach” (6% sodium hypochlorite)</th>
<th>Soak Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 gallon water</td>
<td>9 oz</td>
<td>10 min</td>
</tr>
<tr>
<td>1 gallon water</td>
<td>1 ⅛ Cup</td>
<td>10 min</td>
</tr>
</tbody>
</table>

CHEMICAL DISPOSAL

Small quantities of diluted quaternary ammonium products or bleach which have been used to disinfect foot valves or other firefighting equipment may be disposed of in a sanitary sewer as allowed by the product label. Alternatively, used solutions of quaternary ammonium products or bleach may be disposed of by any application specified on product label direction, such as:

- Cleaning vehicle exteriors and tires by spray application of diluted materials
- For the prevention of mildew on non-porous surfaces
- Disinfection of toilets (including portable)

Always consult the product label in determining the appropriate PPE necessary for the mixing and use of these chemicals, and for final direction on a given products use and disposal. Do NOT allow these products to enter storm drains, lakes, streams, or other waterbodies.

SUPPLY SOURCES

These recommended chemicals are available through the U.S. Government Services Administration (GSA) https://www.gsaadvantage.gov or through local janitorial chemical suppliers.

1) **Green Solutions Neutral Disinfectant®**
 GSA (NSN# 3502-04) = $32 per case (4 gal) = $8 per gal = $.06 per oz = $.12 per gallon of mixed solution
 (Spartan Chemical Company; EPA registration #1839-169-5741)

2) **Green Solutions High Dilution 256®** (replaced Sparquat 256®)
 This formulation is **4X more concentrated** than Green Solutions Neutral Disinfectant® (see above)
Not carried by GSA, but can be purchased from local janitorial supply businesses. Distributor locations can be found at: http://www.spartanchealth.com/where-to-buy

Cost = ~$140 per case (4 gal) = $35 per gal = $0.27 per oz = $0.13 per 1 gallon of mixed solution
(Spartan Chemical Company; EPA registration #1839-169-5741)

3) **Super HDQ®** (twice as concentrated as *Sanicare Quat 128®*)

GSA (NSN# 1204-04) = $71 per case (4 gal) = $18 per gal = $0.14 per oz = $0.07 per 1 gallon of mixed solution

(Spartan Chemical Company; EPA registration # 10324-141-5741)

4) **Liquid household bleach** (6% sodium hypochlorite) (e.g., Regular Clorox® Bleach)
Grocery stores, prices vary
Appendix B: Field Testing Foot Valves for Leaks

BACKGROUND INFORMATION

AIS can be found in the untreated water sources used in firefighting operations, either a natural source (a river or lake) or a human-made water body (a reservoir, canal, or stock tank). Untreated water sources may harbor a variety of AIS, including quagga and zebra mussels, New Zealand mudsnails, whirling disease, didymo (*rock snot*), and many others.

Of great concern for ground equipment is the possibility that residual tank water contaminated with AIS could be transferred to uncontaminated waterbodies during the drafting process.

Therefore, the following best management practices are recommended.

- Use a properly functioning and tested foot valve during drafting. Ensure the foot valve is screwed on snugly and not leaking.

- To minimize the potential for engine and water tender tank water leakage through the foot valve, *prime with water from the drafting source rather than water from the engine tank*. When priming using a bucket, first make sure that the bucket is clean prior to priming so the bucket does not transfer AIS. Additionally, during drafting and water tending operations don’t leave draft hose full with foot valve engaged and submerged in water source when not pumping.

- Care should be taken when drafting to minimize any potential of tank water to come in contact with drafting source; e.g., pump priming or overflow of engine tank when filling.

- Untreated tank water obtained in one location should never be directly discharged into a waterbody at a different location.

In order to be prepared, foot valves on engines and water tenders should be tested monthly during the fire season and whenever an apparatus is moved between waterbodies. The following protocol outlines a simple test method that can be implemented in the field. Because foot valves can leak at either low or high pressures, testing at both pressure levels is required to evaluate the potential for leakage during operational drafting conditions.

EQUIPMENT LIST

Some items may be part of an engine’s supplied equipment. Other items may need to be purchased but are easily found at fire equipment vendors.

Items needed to perform the leak test include:

- Suction hose and ratchet straps
- Assorted male-to-female adapters, increasers, and reducers

If a pressure gauge is not present on equipment:

- 1 ½” Pump Test Kit with Gauge – CFE (Cascade Fire Equipment) P/N: 11495 or similar
- 1 ½” 90 Degree Elbow – CFE (Cascade Fire Equipment) P/N: 10251-90 or similar
LOW PRESSURE TEST (3-5 PSI)

To perform the low pressure test fasten a length of suction hose to the engine or water tender (Figure 8). Use ratchet straps or another suitable method, as long as the suction hose is attached safely and securely to the ladder.

To adjust for size of the foot valve (e.g., 1½”, 3”, or other), use a combination of male-to-female adapters, increasers, and/or reducers to attach the foot valve to the suction hose (Figure 9). Fill the suction hose with 6 to 10 feet of water to obtain 3-5 psi (2’ of hose = 1 psi). The weight of the water provides the pressure on the foot valve. Check the foot valve for 3 to 5 minutes. There should be no leakage. If leakage occurs, replace the foot valve with one that does not leak.

Figure 8. Suction hose with foot valve attached to engine ladder.

Figure 9. Foot valve attached to suction line with various adapters as needed to adjust for foot valve size.

HIGH PRESSURE TEST (130 PSI)

To perform the high pressure test, first attach a wye or other suitable shut-off valve to the rear discharge (Figure 10). If a pressure gauge is not available on the equipment, attach a pressure gauge to the wye, then attach the 90 degree elbow and next attach the foot valve. The test set-up should resemble the one shown in Figure 10. Using the engine’s pump, increase the pressure to 130 psi. Check the foot valve for 3 to 5 minutes. There should be no leakage. If leakage occurs, replace the foot valve with one that does not leak.

Thanks to Carl Schaefer at U.S. Forest Service, San Dimas Technology and Development Center, for development of this test protocol.

Figure 10. Pressure valve attached to the foot valve.
Appendix C: Job Safety Risk Assessment Templates for Disinfecting Field Gear

- OPERATING HOT WATER PRESSURE WASHERS
- DISINFECTING FIELD GEAR WITH QUATERNARY AMMONIUM COMPOUNDS
- DISINFECTING FIELD GEAR WITH CHLORINE BLEACH
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unfamiliarity with Equipment</td>
<td>X</td>
<td>To reduce the risk of injury, read operating instructions carefully before using. Know how to stop the machine and bleed pressure quickly. Be thoroughly familiar with the controls.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Protection</td>
<td>X</td>
<td>High pressure spray can cause debris to become airborne and fly at high speeds. To avoid personal injury, wear eye, hand and foot safety devices. Keep operating area clear of all persons.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk of fire</td>
<td>X</td>
<td>Do not add fuel when the product is operating or still hot.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handling Hazardous Fuels</td>
<td>X</td>
<td>Do not confuse gasoline and fuel oil tanks. Keep proper fuel in proper tank. Don’t use oil containing gasoline, solvents or alcohol. A mix up can result in fire and/or explosion.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONTINUED

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Refueling</td>
<td>(Be Specific)</td>
<td>(Be Specific)</td>
<td>(Be Specific)</td>
<td>(Be Specific)</td>
<td>(Be Specific)</td>
</tr>
<tr>
<td>X</td>
<td>Allow engine to cool for 1-2 minutes before refueling. If fuel is spilled, make sure area is dry before testing the spark plug or starting the engine. (Fire and/or explosion may occur if this is not done.) Refuel gasoline engines: outdoors; with the engine stopped; with no source of ignition within 10 feet of dispensing point; and with allowance for fuel expansion in hot weather.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Pressures</td>
<td>(Be Specific)</td>
<td>(Be Specific)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>High pressure will cause personal injury or equipment damage. Keep clear of nozzle. Use caution when operating. Do not direct discharge stream at people, or severe injury or death will result. Before disconnecting discharge hose from water outlet, turn burner off and open spray gun to allow water to cool below 100°F before stopping the machine. Then open spray gun to relieve pressure. Failure to properly cool down or maintain the heating coil may result in a steam explosion. Never run pump dry or leave spray gun closed longer than 1-2 minutes.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Pressure Nozzle</td>
<td>(Be Specific)</td>
<td>(Be Specific)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Grip cleaning wand securely with both hands before starting. Failure to do this could result in injury from a whipping wand.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20. Remaining Risk Level After Control Measures Are Implemented: (CIRCLE HIGHEST REMAINING RISK LEVEL)</th>
<th>LOW (Supervisor)</th>
<th>MEDIUM (Program Manager)</th>
<th>HIGH (District Ranger)</th>
<th>EXTREME (District Ranger or Forest Supervisor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CIRCLE HIGHEST REMAINING RISK LEVEL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>21. RISK DECISION AUTHORITY: (Approval/Authority Signature Block)</th>
<th>(Note: if the person preparing the form signs this block, the signature indicates only that the appropriate risk decision authority was notified of the initial risk level, control measures taken and appropriate resources requested; and that the risk was accepted by the decision authority.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Signature)</td>
<td>(Signature)</td>
</tr>
</tbody>
</table>
RISK ASSESSMENT MATRIX

As we have learned, successful management of risk demands commitment and leadership from top management to the smart employees in the field. We must continue to work towards agreement on how we define and manage tolerable risk and discourage attitudes of apathy or fatalism. Clearly we cannot completely eliminate the risk. Moreover, sardonic remarks that the only way to avoid the danger is to stay out of the woods do not add value to the discussion. On the other hand, we must not engage full on with heads down and surrender our fate to so called luck, or simply dismiss the concern as an inherent, unavoidable part of a risky job. We have the experience and capability to safely manage hazards and are obligated to seize every opportunity to do better.

A problem when you have a number of possible risks is to decide which ones are worthy of further attention. The Risk Assessment Matrix is a simple graphical tool widely used in many professions worldwide to help prioritize risks.

There are two main dimensions to risk: (a) How likely it will occur (probability), and (b) The impact/effect (severity) that it would have, should it occur. One familiar model of quantifying risk is to assign a numeric value to these risks and to multiply these together. However, a problem with this quantitative approach is that high-probability/low-impact risks get the same score as high-impact/low-probability risks. The following Risk Assessment Matrix is a widely recognized and more effective method to assess risk.

The Risk Assessment Matrix simply puts Probability (likelihood) and Severity (effect/impact) on two sides of an x-y chart and then the risk are placed within this two-dimensional space (see chart below). This gives several advantages:

- High-probability/low-impact and high-impact/low-probability risks are differentiated.
- You can visually compare risk, thus asking the question ‘is this one more or less likely than that one?’ This plays to the human cognitive preference for paired comparison rather than absolute evaluation.
- Then the risks can be addressed from top right down to bottom left. High-probability/low-impact and high-impact/low-probability risk of equal risk exposure score will tend to be evaluated at around the same time.
- The process can be done on the wall with flipchart-paper, on a paper or computer format, or in many cases in your head.
Risk Assessment Matrix

<table>
<thead>
<tr>
<th>Severity (Effect/impact)</th>
<th>HAZARD PROBABILITY (Likelihood)</th>
<th>Frequent</th>
<th>Likely</th>
<th>Possible</th>
<th>Seldom</th>
<th>Unlikely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catastrophic:</td>
<td></td>
<td></td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>Major:</td>
<td></td>
<td></td>
<td>E</td>
<td>H</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Moderate:</td>
<td></td>
<td></td>
<td>H</td>
<td>M</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Minor:</td>
<td></td>
<td></td>
<td>M</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk Tolerance Rating Criteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unacceptable:
- Likely harm from an event must not be accepted. Must be reduced with administrative barriers of protection and/or engineering controls. Eliminate or avoid risk to maintain sufficient safeguards.

Intolerable:
- Should be reduced with administrative and/or engineering controls. Risk should not be tolerated save in special/limited circumstances.

Tolerable:
- Tolerable if further risk reduction (cost, time, effort) would be grossly disproportionate to improvement gained.

Acceptable:
- Negligible given common safe job procedures are applied. Continual vigilance necessary to maintain assurance that risk remains at this level.
Organizational Risk Management
Organizational and Operational Risk Assessment Worksheet

| 1. Forest or Unit: (EXAMPLE TEMPLATE) | Location: | Prepared by (Name / Duty Position): | 2. Page ______ of ________ |

DISINFECTING FIELD GEAR WITH QUATERNARY AMMONIUM COMPOUNDS (e.g., HDQ, Green Solutions)

Worksheet Instructions:
- For each hazard identified in box 8, the local district/unit is to complete boxes 12 and 13 with specific implementation controls and personnel assigned unique to the activity and location.
- Additional hazards unique to this location or unit may need to be documented in box 8 by the local district/unit.

<table>
<thead>
<tr>
<th>8. Identified Hazards</th>
<th>9. Assess the Hazards: Initial Risk rating from risk matrix</th>
<th>10. Initial Proposed Control Measures Developed for Identified Hazards/Risks:</th>
<th>11. Assess the Hazard’s Residual Risk:</th>
<th>12. How to Implement the Controls: (To be completed on the local unit)</th>
<th>13. Assigned to: (To be completed on the local unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Contact</td>
<td>X</td>
<td>(Be Specific)</td>
<td>L</td>
<td>M</td>
<td>H</td>
</tr>
<tr>
<td>Swallowed Chemical</td>
<td>X</td>
<td>If chemical is swallowed, drink a glassful of water and call a physician. Do not induce vomiting.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye Contact</td>
<td>X</td>
<td>Wear PPE. Remove contact lenses if present. Flush eyes with copious amounts of water for at least 15 minutes. If irritation persists, see a doctor. When preparing quat solutions in the field each crew member should carry 1 quart of water at a minimum for use as an eye flush.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage and Transport</td>
<td>X</td>
<td>Store in an air tight container upright in a cool, dry area, and avoid heat above 110° F. In case of spill, flood areas with large quantities of water. Do not reuse empty container. Do NOT allow product to enter storm drains, lakes, streams, or other bodies of water.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONTINUED

14. Identified Hazards

Inhalation of Fumes
- L: X
- M:
- H:
- E:

Avoid inhalation of vapor or mist; normal room ventilation is adequate.

15. Assess the Hazards: Initial Risk from matrix

Physical or Chemical Hazards
- L: X
- M:
- H:
- E:

Do not mix with chlorine bleach. The combination may release hazardous or explosive gases.

Environmental Hazards
- L: X
- M:
- H:
- E:

Quat compounds are highly toxic to aquatic organisms but are immobile in soil. Keep effluent containing this product at least 100 ft from lakes, ponds, streams or other waters (EPA’s Reregistration Eligibility Decision for Aliphatic Alkyl Quaternaries EPA739-R-06-008 at: https://archive.epa.gov/pesticides/reregistration/web/pdf/ddac_red.pdf. Flush to sanitary sewers if possible, but notify treatment facility if large volumes are involved.

16. Control Measures Developed for Identified Hazards: (Specific measures taken to reduce the probability of a hazard/risks)

17. Assess the Hazard’s Residual Risk:

18. How to Implement the Controls:

19. Assigned to:

20. Remaining Risk Level After Control Measures Are Implemented: (CIRCLE HIGHEST REMAINING RISK LEVEL)

<table>
<thead>
<tr>
<th>Level</th>
<th>Low (Supervisor)</th>
<th>Medium (Program Manager Staff Officer)</th>
<th>High (District Ranger)</th>
<th>Extreme (District Ranger or Forest Supervisor)</th>
</tr>
</thead>
</table>

21. RISK DECISION AUTHORITY: (Approval/Authority Signature Block)

(If Initial Risk Level is Medium, High or Extremely High, Brief Risk Decision Authority at that level on Controls and Control Measures used to reduce risks) *(Note: if the person preparing the form signs this block, the signature indicates only that the appropriate risk decision authority was notified of the initial risk level, control measures taken and appropriate resources requested; and that the risk was accepted by the decision authority.)*

(Signature)
RISK ASSESSMENT MATRIX

As we have learned, successful management of risk demands commitment and leadership from top management to the smart employees in the field. We must continue to work towards agreement on how we define and manage tolerable risk and discourage attitudes of apathy or fatalism. Clearly we cannot completely eliminate the risk. Moreover, sardonic remarks that the only way to avoid the danger is to stay out of the woods do not add value to the discussion. On the other hand, we must not engage full on with heads down and surrender our fate to so-called luck, or simply dismiss the concern as an inherent, unavoidable part of a risky job. We have the experience and capability to safely manage hazards and are obligated to seize every opportunity to do better.

A problem when you have a number of possible risks is to decide which ones are worthy of further attention. The Risk Assessment Matrix is a simple graphical tool widely used in many professions worldwide to help prioritize risks.

There are two main dimensions to risk: (a) How likely it will occur (probability), and (b) The impact/effect (severity) that it would have, should it occur. One familiar model of quantifying risk is to assign a numeric value to these risks and to multiply these together. However, a problem with this quantitative approach is that high-probability/low-impact risks get the same score as high-impact/low-probability risks. The following Risk Assessment Matrix is a widely recognized and more effective method to assess risk.

The Risk Assessment Matrix simply puts Probability (likelihood) and Severity (effect/impact) on two sides of an x-y chart and then the risk are placed within this two-dimensional space (see chart below). This gives several advantages:

- High-probability/low-impact and high-impact/low-probability risks are differentiated.
- You can visually compare risk, thus asking the question ‘is this one more or less likely than that one?’ This plays to the human cognitive preference for paired comparison rather than absolute evaluation.
- Then the risks can be addressed from top right down to bottom left. High-probability/low-impact and high-impact/low-probability risk of equal risk exposure score will tend to be evaluated at around the same time.
- The process can be done on the wall with flipchart-paper, on a paper or computer format, or in many cases in your head.
Risk Assessment

HAZARD PROBABILITY (Likelihood)

<table>
<thead>
<tr>
<th></th>
<th>Frequent</th>
<th>Likely</th>
<th>Possible</th>
<th>Seldom</th>
<th>Unlikely</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
</tbody>
</table>

Severity

(Effect/Impact)

<table>
<thead>
<tr>
<th>Hazard Probability</th>
<th>Frequency</th>
<th>Catastrophic:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fatal, life threatening or permanent disability</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Extreme</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>(3)</td>
<td>(2)</td>
<td>(1)</td>
</tr>
</tbody>
</table>

Risk Tolerance Rating Criteria

<table>
<thead>
<tr>
<th>Extreme - 4</th>
<th>Unacceptable:</th>
<th>Intolerable:</th>
<th>Tolerable:</th>
<th>Acceptable:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Likely harm from an event must not be accepted. Must be reduced with administrative barriers of protection and/or engineering controls. Eliminate or avoid risk to maintain sufficient safeguards.</td>
<td>Should be reduced with administrative and/or engineering controls. Risk should not be tolerated save in special/limited circumstances.</td>
<td>Tolerable if further risk reduction (cost, time, effort) would be grossly disproportionate to improvement gained.</td>
<td>Negligible given common safe job procedures are applied. Continual vigilance necessary to maintain assurance that risk remains at this level.</td>
</tr>
</tbody>
</table>
DISINFECTING FIELD GEAR WITH CHLORINE BLEACH

1. Forest or Unit:
- **EXAMPLE TEMPLATE**

2. Location:

3. Prepared by (Name / Duty Position):

4. Initial Assessment Date:

5. Date of this assessment update:

6. Version of Worksheet:

Worksheet Instructions:
- For each hazard identified in box 8, the local district/unit is to complete boxes 12 and 13 with specific implementation controls and personnel assigned unique to the activity and location.
- Additional hazards unique to this location or unit may need to be documented in box 8 by the local district/unit.

8. Identified Hazards

<table>
<thead>
<tr>
<th>Hazard</th>
<th>L</th>
<th>M</th>
<th>H</th>
<th>E</th>
<th>L</th>
<th>M</th>
<th>H</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Contact</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Swallowed Chemical</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Eye Contact</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Storage and Transport</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

- **Chemical Contact**
 - Bleach can cause severe but temporary eye irritation and can be a skin irritant. Wear protective clothing including safety glasses or goggles and impervious gloves.

- **Swallowed Chemical**
 - If chemical is swallowed, drink a glassful of water and call a physician. Do not induce vomiting.

- **Eye Contact**
 - Wear PPE. Remove contact lenses if present. Flush eyes with copious amounts of water for at least 15 minutes. If irritation persists, see a doctor. When preparing bleach solutions in the field each crew member should carry 1 quart of water at a minimum for use as an eye flush.

- **Storage and Transport**
 - Store in an air tight container upright in a cool, dry area, and away from direct sunlight and heat to avoid deterioration. In case of spill, flood areas with large quantities of water. Do not reuse empty container. Do NOT allow product to enter storm drains, lakes, streams, or other bodies of water.
CONTINUED

|------------------------|---|--|---------------------------------|-------------------------|-----------------|

<table>
<thead>
<tr>
<th>(Be Specific)</th>
<th>L</th>
<th>M</th>
<th>H</th>
<th>E</th>
<th>(Be Specific)</th>
<th>L</th>
<th>M</th>
<th>H</th>
<th>E</th>
<th>(Be Specific)</th>
<th>(Be Specific)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalation of Fumes</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>Avoid inhalation of vapor or mist and use only in a well-ventilated area.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical or Chemical Hazards</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>Product contains a strong oxidizer. Prolonged contact with metal may cause pitting or discoloration. Will damage fabrics and rubber. Do not add bleach directly to fire retardants containing ammonia, such as Phos-Chek, or with quaternary ammonium products. Mixing bleach with products containing ammonia may release hazardous or explosive gases.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Hazards</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>Bleach is toxic to aquatic organisms but degrades rapidly. Do not discharge effluent containing this product into lakes, ponds, streams or other waters.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20. Remaining Risk Level After Control Measures Are Implemented: *(CIRCLE HIGHEST REMAINING RISK LEVEL)*

| LOW | MEDIUM | HIGH | EXTREME |
| (Supervisor) | (Program Manager Staff Officer) | (District Ranger) | (District Ranger or Forest Supervisor) |

21. RISK DECISION AUTHORITY: *(Approval/Authority Signature Block)* *(If Initial Risk Level is Medium, High or Extremely High, Brief Risk Decision Authority at that level on Controls and Control Measures used to reduce risks.) *(Note: if the person preparing the form signs this block, the signature indicates only that the appropriate risk decision authority was notified of the initial risk level, control measures taken and appropriate resources requested; and that the risk was accepted by the decision authority.)*

(Signature)
RISK ASSESSMENT MATRIX

As we have learned, successful management of risk demands commitment and leadership from top management to the smart employees in the field. We must continue to work towards agreement on how we define and manage tolerable risk and discourage attitudes of apathy or fatalism. Clearly we cannot completely eliminate the risk. Moreover, sardonic remarks that the only way to avoid the danger is to stay out of the woods do not add value to the discussion. On the other hand, we must not engage full on with heads down and surrender our fate to so called luck, or simply dismiss the concern as an inherent, unavoidable part of a risky job. We have the experience and capability to safely manage hazards and are obligated to seize every opportunity to do better.

A problem when you have a number of possible risks is to decide which ones are worthy of further attention. The Risk Assessment Matrix is a simple graphical tool widely used in many professions worldwide to help prioritize risks.

There are two main dimensions to risk: (a) How likely it will occur (probability) and (b) The impact/effect (severity) that it would have, should it occur. One familiar model of quantifying risk is to assign a numeric value to these risks and to multiply these together. However, a problem with this quantitative approach is that high-probability/low-impact risks get the same score as high-impact/low-probability risks. The following Risk Assessment Matrix is a widely recognized and more effective method to assess risk.

The Risk Assessment Matrix simply puts Probability (likelihood) and Severity (effect/impact) on two sides of an x-y chart and then the risk are placed within this two-dimensional space (see chart below). This gives several advantages:

- High-probability/low-impact and high-impact/low-probability risks are differentiated.

- You can visually compare risk, thus asking the question ‘is this one more or less likely than that one?’ This plays to the human cognitive preference for paired comparison rather than absolute evaluation.

- Then the risks can be addressed from top right down to bottom left. High-probability/low-impact and high-impact/low-probability risk of equal risk exposure score will tend to be evaluated at around the same time.

- The process can be done on the wall with flipchart-paper, on a paper or computer format, or in many cases in your head.
Risk Assessment Matrix

<table>
<thead>
<tr>
<th>Severity (Effect/impact)</th>
<th>HAZARD PROBABILITY (Likelihood)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequent</td>
</tr>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Catastrophic:</td>
<td>I</td>
</tr>
<tr>
<td>Fatal, life threatening or permanent disability</td>
<td>Extreme</td>
</tr>
<tr>
<td>Major:</td>
<td>II</td>
</tr>
<tr>
<td>Severe injury or illness. Long term disability and/or Lost time</td>
<td>High</td>
</tr>
<tr>
<td>Moderate:</td>
<td>III</td>
</tr>
<tr>
<td>Medical treatment-no permanent injury or illness, and/or restricted duty</td>
<td>Medium</td>
</tr>
<tr>
<td>Minor: First aid -</td>
<td>IV</td>
</tr>
<tr>
<td>Minor cuts, bruises, or sickness. No lost time/restricted duty</td>
<td>Low</td>
</tr>
</tbody>
</table>

Risk Tolerance Rating Criteria

<table>
<thead>
<tr>
<th>Extreme - 4</th>
<th>High - 3</th>
<th>Medium - 2</th>
<th>Low - 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unacceptable:</td>
<td>Intolerable:</td>
<td>Tolerable:</td>
<td>Acceptable:</td>
</tr>
<tr>
<td>Likely harm from an event must not be accepted. Must be reduced with administrative barriers of protection and/or engineering controls. Eliminate or avoid risk to maintain sufficient safeguards.</td>
<td>Should be reduced with administrative and/or engineering controls. Risk should not be tolerated save in special/limited circumstances.</td>
<td>Tolerable if further risk reduction (cost, time, effort) would be grossly disproportionate to improvement gained.</td>
<td>Negligible given common safe job procedures are applied. Continual vigilance necessary to maintain assurance that risk remains at this level.</td>
</tr>
</tbody>
</table>
Appendix D: AQUATIC INVASIVE SPECIES of Concern to Firefighters and Disinfection Methods

The species fire operations are most likely to encounter, their distributions, all disinfection methods, and references.
Zebra & Quagga Mussels

Dreissena polymorpha & Dreissena rostriformis bugensis

GENERAL INFORMATION:

- **Quagga Mussel Distribution:** CA, NV, UT, AZ, CO, NM, OK, TX, midwest, Great Lakes region and NE US. For most up-to-date information on distribution, please see: https://nas.er.usgs.gov/taxgroup/mollusks/zebramussel/
- **Zebra Mussel Distribution:** CA, UT, CO, OK, KS, NE, SD, ND, LA, AR, MO, IA, MN, MS, TN, AL, KY, IN, other midwest and Great Lakes regions and NE US. For most up-to-date information on distribution, please see: https://nas.er.usgs.gov/taxgroup/mollusks/zebramussel/
- **Habitat:** Both mussels attach to hard surfaces in temperate lakes and slow rivers. Microscopic mussel larvae are released into open water where they swim about for several days before settling.
- **Fire Activities Posing Risk:** Most concern is with microscopic larvae present in water column. Larvae can survive for 5 days in internal tanks with residual water (summer months). Risks include: contact with untreated water; helicopter buckets, snorkels, and other drafting gear that capture bottom sediments, mud, or aquatic plants; internal tanks and hoses that retain residual untreated water.
- **Environmental Impacts:** Zebra and quagga mussels colonize water supply pipes and biofoul hydroelectric and nuclear power plants, public water plants, and industrial facilities. These species remove nutrients in aquatic ecosystems and litter beaches with sharp-edged shells.

DISINFECTION PROTOCOLS:

<table>
<thead>
<tr>
<th>Methods of Control for Firefighters</th>
<th>Details of Method</th>
<th>References</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>HOT WATER SPRAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 140°F (60°C) for 5 to 10 seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>To kill Quagga/Zebra mussel free-swimming larvae</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*≥ 140°F (60°C) likely to be ‘instantly lethal’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methods of Control for Firefighters</td>
<td>Details of Method</td>
<td>References</td>
<td>Notes</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--</td>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>HOT WATER IMMERSION:</td>
<td>To kill Quagga/Zebra mussel adults and free-swimming larvae ≥ 120°F (50°C) for 1 minute</td>
<td>Beyer et al. 2011</td>
<td></td>
</tr>
<tr>
<td>FREEZING</td>
<td>≤ 32°F (0°C) for 48 hours or more for adults</td>
<td>McMahon 1996</td>
<td></td>
</tr>
<tr>
<td>Drying</td>
<td>In summer, 5 days survival time for larvae in internal tanks with residual water; in cooler months; 28 days</td>
<td>Choi et al. 2013</td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td>Scrapping, brushing, hot water pressure washing to flush larvae</td>
<td>Comeau et al. 2011 and multiple sources</td>
<td></td>
</tr>
<tr>
<td>CHEMICALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quaternary ammonium Compounds</td>
<td>To kill Quagga mussel larvae:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| (e.g., alkyl dimethyl benzylammonium chloride [ADBAC]; diecyl dimethyl ammonium chloride [DDAC]) | 3.1% *Sparquat*256° solution
Mixing instructions:
4.3 oz per 1 gallon water
3.4 gallons per 100 gallons water
Contact time = 10 minutes
OR
1.8% *Green Solutions High Dilution* 256° solution
Mixing instructions:
2.5 oz per 1 gallon water
1.9 gallons per 100 gallons water
Contact time = 10 minutes | Britton and Dingman 2011 | Quat compounds methods are specifically for larvae likely found in the water column.
Quat Compounds can corrode aluminum; not for use on aircraft equipment. |
| Bleach (e.g., Clorox®) | 6% sodium hypochlorite
0.5% bleach solution (250 ppm sodium hypochlorite)
Mixing instruction:
0.6 oz bleach per 1 gallon water | Modovski 2011 (Based on Cope et al. 2003 which cited Gatenby 2000) | Bleach is corrosive to gear and metals. |
<table>
<thead>
<tr>
<th>Methods of Control for Firefighters</th>
<th>Details of Method</th>
<th>References</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Tablespoons of bleach per gallon water ½ gallon bleach per 100 gallons water Contact time = rinse only, no time specified.</td>
<td></td>
<td>Stockton 2011</td>
<td>Virkon is corrosive to soft metals. Although not specifically tested, may not be applicable for use on aircraft equipment.</td>
</tr>
<tr>
<td>Other Disinfectants</td>
<td>To kill Quagga mussel adults & larvae: 2% Virkon Aquatic® solution Mixing instructions: 20 g/liter 76g per 1 gallon of water 760g per 100 gallons water Contact time = 10 minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>To kill Quagga mussel larvae only: 0.5% Virkon Aquatic® solution Mixing instructions: 5 g/liter 19g per 1 gallon of water 190g per 100 gallons water Contact time = 10 minutes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Asian Clam

Corbicula fluminea

General Information:

- **Distribution:** Almost all US states except MT, ND and ME. For most up-to-date information on distribution, please see: https://nas.er.usgs.gov//queries/FactSheet.aspx?speciesID=92.
- **Habitat:** Lakes and streams, buried in sediments or larvae and juveniles drifting in currents.
- **Fire Activities Posing Risk:** Most concern is with larvae and juvenile clams in swept into water column. Risks include: contact with untreated water; helicopter buckets, snorkels, and other drafting gear that capture bottom sediments, mud, or aquatic plants; internal tanks and hoses that retain residual untreated water.
- **Environmental Impacts:** Asian clams can biofoul power plant and industrial water systems. Juveniles secrete a mucousy dragline and can be easily transported in currents. The clams also clog irrigation canals and drinking water pipes.

Disinfection Protocols:

<table>
<thead>
<tr>
<th>Methods of Control for Firefighters</th>
<th>Details of Method</th>
<th>References</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>To kill Asian clam larvae and small juveniles:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HOT WATER</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>It is probable that a hot water spray ≥ 140°F (60°C) for a few seconds would be lethal. No scientific study reports effectiveness.</td>
<td>R. McMahon, pers. comm. (2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flushing equipment with hot water would remove larvae and juveniles, which are easily entrained in flowing water.</td>
<td>McMahon and Williams 1986</td>
<td></td>
</tr>
<tr>
<td>To kill Asian clam adults:</td>
<td>≥ 109°F (43°C) for 30 minutes</td>
<td>Mattice and Dye 1975</td>
<td></td>
</tr>
<tr>
<td>Methods of Control for Firefighters</td>
<td>Details of Method</td>
<td>References</td>
<td>Notes</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Drying</td>
<td>Dry gear in air for 14–27 days in cool weather; much shorter dry times in full sun</td>
<td>McMahon and Williams 1984</td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td>Scraping, brushing, remove all plant material</td>
<td>Multiple sources</td>
<td></td>
</tr>
<tr>
<td>CHEMICALS</td>
<td>Though chemicals are used in hydroelectric facilities, Asian clams are resistant to chemicals: decontamination times are lengthy and kill rates < 100%</td>
<td>For example, Barbour et al. 2013</td>
<td></td>
</tr>
</tbody>
</table>
New Zealand Mudsnail

Potamopyrgus antipodarum

General Information:
- **Distribution:** WA, OR, CA, ID, MT, WY, UT, NV, AZ, CO, MN, IL, OH, PA, NY, and Canada. For most up-to-date information on distribution, please see: https://nas.er.usgs.gov/taxgroup/mollusks/newzealandmudsnaildistribution.aspx.
- **Habitat:** Streams and lakes, occurring on rocky substrates as well as aquatic plants.
- **Fire Activities posing risk:** Contact with untreated water; helicopter buckets, snorkels, and other drafting gear that capture bottom sediments, mud, or aquatic plants; internal tanks and hoses that retain residual untreated water.
- **Environmental impacts:** Mudsnails reproduce very quickly. It only takes a SINGLE snail can result in a colony of more than 40 million snails in just one year. New Zealand mudsnails can smother a streambed, crowding out the native aquatic species that provide food for fish.

Disinfection Protocols:

<table>
<thead>
<tr>
<th>Methods of Control for Firefighters</th>
<th>Details of Method</th>
<th>References</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>HOT WATER:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 122°F (50°C) for 15 seconds</td>
<td>Dwyer et al. 2003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FREEZING:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 27°F (-3°C) for 1 to 2 hours</td>
<td>Richards et al. 2004</td>
<td></td>
</tr>
<tr>
<td>Drying</td>
<td>Dry gear in full sunlight for ≥ 50 hours</td>
<td>Alonso and Castro-Diez 2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dry gear at 86°F (30°C) for 24 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dry gear at ≥ 104°F (40°C) for at least 2 hours</td>
<td>Richards et al. 2004</td>
<td></td>
</tr>
<tr>
<td>Methods of Control for Firefighters</td>
<td>Details of Method</td>
<td>References</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------------------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>Mechanical</td>
<td>Scraping, brushing, washing and removing organics (e.g. mud)</td>
<td>Multiple sources</td>
<td></td>
</tr>
<tr>
<td>CHEMICALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quaternary ammonium compounds</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| (e.g., alkyl dimethyl benzylammonium chloride [ADBAC]; diecyldimethyl ammonium chloride [DDAC]) | **0.8% Green Solutions High Dilution 256™ solution**
Mixing instructions:
- ½ liquid oz. per 1 gallon water
- 1 Tbsp. per 1 gallon water
Contact time = 10 minutes
0.33% Super HDQ™
Mixing instructions:
- ½ liquid oz. per 1 gallon water
- 1 Tbsp. per 1 gallon water
Contact time = 10 minutes | Stout et al. 2016 | Quat Compounds can corrode aluminum; not for use on aircraft equipment. |
<p>| Bleach (e.g., Clorox®) | Not effective | Hosea and Finlayson 2005 | |</p>
<table>
<thead>
<tr>
<th>Methods of Control for Firefighters</th>
<th>Details of Method</th>
<th>References</th>
<th>Notes</th>
</tr>
</thead>
</table>
| Other Agents | 2% *Virkon Aquatic®* solution
Mixing instructions:
77g per 1 gallon of water
770 g per 100 gallons water
Contact time = 15-20 minutes | Stockton and Moffitt 2013 | Virkon is corrosive to soft metals. Although not specifically tested, may not be applicable for use on aircraft equipment. |
Malaysian Trumpet Snail

Melanoides tuberculata

Also called: Red Rimmed Melania, Red Lipped Melania

General Information:
- **Distribution:** AZ, CA, CO, FL, HI, LA, MT, NC, NV, OR, UT, TX (possible in SD, VA and WY). For most up-to-date information on distribution, please see: https://nas.er.usgs.gov/queries/FactSheet.aspx?SpeciesID=1037.
- **Habitat:** Slow moving rivers and lakes, on mud and plants
- **Fire Activities Posing Risk:** Risks include: helicopter buckets, snorkels, and other drafting gear that capture bottom sediments, mud, or aquatic plants; internal tanks and hoses that retain residual untreated water
- **Environmental Impact:** This trumpet snail can outcompete native snails and alter ecosystem functions

Disinfection Protocols:

<table>
<thead>
<tr>
<th>Methods of Control for Firefighters</th>
<th>Details of Method</th>
<th>References</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>HOT WATER:</td>
<td>Mitchell and Brandt 2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>To kill snails of all sizes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>122 °F (50°C) for 4-5 minutes</td>
<td>Mitchell and Brandt 2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FREEZING:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Freezing in Ice water for 12-24 hours</td>
<td>Mitchell and Brandt 2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Freezing in salty ice water for 2 hours</td>
<td>Mitchell and Brandt 2009</td>
<td></td>
</tr>
<tr>
<td>Drying</td>
<td>Very resistant to drying, >20 days</td>
<td>Mitchell and Brandt 2005</td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td>Scraping, brushing, hot water pressure washing</td>
<td>Multiple sources</td>
<td></td>
</tr>
</tbody>
</table>

Guide to Preventing Aquatic Invasive Species Transport by Wildland Fire Operations
<table>
<thead>
<tr>
<th>Methods of Control for Firefighters</th>
<th>Details of Method</th>
<th>References</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEMICALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quaternary ammonium compounds</td>
<td>No known studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bleach (e.g., Clorox®) 6% sodium hypochlorite</td>
<td>Not effective</td>
<td>Mitchell et al. 2007</td>
<td></td>
</tr>
</tbody>
</table>
Oriental Mystery Snail

Cipangopaludina spp.

Also called: Chinese Mystery Snail

General Information:

- **Distribution:** WA, OR, CA, ID, UT, AZ, CO, TX, NE, MO, GA, FL, NC, Great Lakes region, and northeastern US. For most up-to-date information on distribution, please see: https://nas.er.usgs.gov/queries/FactSheet.aspx?SpeciesID=1044.
- **Habitat:** Slow moving rivers and lakes, on mud and plants. Readily transported by equipment infested with snails hitchhiking on aquatic plants.
- **Fire Activities Posing Risk:** Helicopter buckets, snorkels, and other drafting gear that capture bottom sediments, mud, or aquatic plants; internal tanks and hoses that retain residual untreated water.
- **Environmental Impact:** These snails form dense populations and outcompete native species for food and habitat. They are intermediate hosts for parasitic worms and can transmit diseases that kill waterfowl. Some mystery snails prey on fish embryos. Snail shells often litter shorelines and clog screens of water intakes.

Disinfection Protocols:

<table>
<thead>
<tr>
<th>Method of Control for Firefighters</th>
<th>Details of Method</th>
<th>References</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>HOT WATER: 122 °F (50°C) for 4-5 minutes</td>
<td>J. Havel, pers. comm. (2014)</td>
<td></td>
</tr>
<tr>
<td>Drying</td>
<td>14 to ≥28 days, depending on snail size. Larger snails very resistant to drying</td>
<td>Havel 2011</td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td>Scraping, brushing, clean off all plant material</td>
<td>Multiple sources</td>
<td></td>
</tr>
<tr>
<td>Method of Control for Firefighters</td>
<td>Details of Method</td>
<td>References</td>
<td>Notes</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>CHEMICALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quaternary ammonium compounds</td>
<td>No known studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bleach (e.g., Clorox®, 6% sodium hypochlorite)</td>
<td>No known studies, but as with other snails with sealing flaps (e.g., New Zealand mudsnails, trumpet snails), likely not effective</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Faucet Snail

Bithynia tentaculata

General Information:
- **Distribution:** Great Lakes Region, WI, PA, NY, VT, VA, MD, and MT. For most up-to-date information on distribution, please see: https://nas.er.usgs.gov/queries/FactSheet.aspx?speciesID=987.
- **Habitat:** Slow moving rivers and lakes, on mud and plants. Readily transported by equipment infested with snails hitchhiking on aquatic plants.
- **Fire Activities Posing Risk:** Helicopter buckets, snorkels, and other drafting gear that capture bottom sediments, mud, or aquatic plants; internal tanks and hoses that retain residual untreated water.
- **Environmental Impact:** These snails outcompete native species for food and habitat in lakes and streams. They are intermediate hosts for parasitic worms and transmit diseases that kill waterfowl. Where abundant they infest municipal water supplies.

Disinfection Protocols:

<table>
<thead>
<tr>
<th>Method of Control for Firefighters</th>
<th>Details of Method</th>
<th>References</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>HOT WATER: 122 °F (50°C) for ≥1 minute</td>
<td>Mitchell and Cole 2008</td>
<td></td>
</tr>
<tr>
<td>Drying</td>
<td>Dry gear for 14 to 21 days</td>
<td>Mitchell and Cole 2008</td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td>Scraping, brushing, clean off all plant material</td>
<td>Multiple sources</td>
<td></td>
</tr>
<tr>
<td>CHEMICALS</td>
<td>No known studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quaternary ammonium Compounds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bleach (e.g., Clorox®) 6% sodium hypochlorite</td>
<td>Not effective</td>
<td>Mitchell and Cole 2008</td>
<td></td>
</tr>
<tr>
<td>Other agents</td>
<td>Virkon® Not effective</td>
<td>Mitchell and Cole 2008</td>
<td></td>
</tr>
</tbody>
</table>
Spiny Waterflea

Bythotrephes longimanus

General Information:
- **Distribution:** Primarily in the Great Lakes Region of the US. For most up-to-date information on distribution, please see: https://nas.er.usgs.gov/queries/FactSheet.aspx?SpeciesID=162.
- **Habitat:** Waterflea plankton (adults and juveniles) are free-swimming in water column of ponds and lakes; dormant (resting) eggs are in mud or silt.
- **Fire Activities posing risk:** Contact with untreated water; helicopter buckets, snorkels, and other drafting gear that capture bottom sediments, mud, or aquatic plants; internal tanks and hoses that retain residual untreated water.
- **Environmental Impact:** The rapidly reproducing spiny waterflea competes with small fish and fouls fishing gear. Larger fish that feed on waterfleas may die due to punctures from spines.

Disinfection Protocols:

<table>
<thead>
<tr>
<th>Methods of Control for Firefighters</th>
<th>Details of Method</th>
<th>References</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>HOT WATER</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>To kill adults, juveniles, and resting eggs:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 122°F (50°C) for 5 minutes</td>
<td>Branstrator et al. 2013 (resting eggs)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>140°F (60°C) for 1 minute</td>
<td>Beyer et al. 2011 (plankton)</td>
<td></td>
</tr>
<tr>
<td>Drying</td>
<td>Dry gear for ≥6 hours (planktonic adults and juveniles, and resting eggs)</td>
<td>Branstrator et al. 2013 (resting eggs)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Branstrator, D.K., pers. comm. 2014; (plankton)</td>
<td></td>
</tr>
<tr>
<td>Methods of Control for Firefighters</td>
<td>Details of Method</td>
<td>References</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------------------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>Mechanical</td>
<td>Scraping, brushing, removal of organic and plant materials.</td>
<td>Multiple sources</td>
<td></td>
</tr>
<tr>
<td>CHEMICALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quaternary ammonium compounds</td>
<td>No known studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bleach (e.g., Clorox®, 6% sodium hypochlorite)</td>
<td>Not effective</td>
<td>Branstrator et al. 2013</td>
<td></td>
</tr>
</tbody>
</table>
Didymo
Didymosphenia geminata

General Information:
- **Distribution:** WA, OR, CA, ID, MT, WY, CO SC, ND, AR, NC, VA WV PA, NY, NH, CT, AK, and Canada. For most up-to-date information on distribution, please see: https://www.invasivespeciesinfo.gov/aquatics/didymo.shtml.
- **Habitat:** Didymo is a single cell alga that attaches to submerged rocks in cold streams and rivers.
- **Fire Activities posing risk:** Contact with untreated water; helicopter buckets, snorkels, and other drafting gear that capture bottom sediments, mud, or aquatic plants; internal tanks and hoses that retain residual untreated water. Didymo can survive in residual tank water for <2 days in summer but up to 45 days in autumn (Kilroy et al. 2007).
- **Environmental Risk:** Didymo forms dense mats that trail downstream and can completely cover the substrate, smothering native plants, insects, and mollusks.

Disinfection Protocols:

<table>
<thead>
<tr>
<th>Methods of Control for Firefighters</th>
<th>Details of Method</th>
<th>References</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>HOT WATER: 113°F (45°C) for 20 minutes 140°F (60°C) for 1 minute FREEZING: 28°F (-2°C) for 4 hours ; 5°F (-15°C) for 2 hours</td>
<td>Kilroy et al. 2007</td>
<td></td>
</tr>
<tr>
<td>Drying</td>
<td>Dry external surfaces and internal tanks for 48 hours in summer</td>
<td>Kilroy et al. 2007</td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td>Scraping, brushing, removal of organic and plant materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEMICALS</td>
<td>2.0 % Sanicare Quat128 solution Mixing instructions: 2.4 oz per 1 gallon water</td>
<td>Matthews 2007, derived from Kilroy et al. 2007</td>
<td></td>
</tr>
<tr>
<td>Methods of Control for Firefighters</td>
<td>Details of Method</td>
<td>References</td>
<td>Notes</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>------------------</td>
<td>------------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| benzylammonium chloride [ADBAC]; diecyl dimethyl ammonium chloride [DDAC]) | 1.9 gallons per 100 gallons water
Contact time = 1 minute
OR
1.2% *Sparquat*256® solution
Mixing instructions:
1.7 oz per 1 gallon water
1.3 gallons per 100 gallons water
Contact time = 1 minute
OR
0.7% *Green Solutions High Dilution 256*® solution
Mixing instructions:
1.0 oz per 1 gallon water
0.8 gallons per 100 gallons water
Contact time = 1 minute | Root and O’Reilly 2012 | ≥90% effective in killing didymo; corrosive to fabric and metals |
| Bleach (e.g., Clorox®)
6% sodium hypochlorite | 2.0% *bleach solution* (800 ppm sodium hypochlorite)
Mixing instructions:
1.8 oz bleach per 1 gallon water
3.6 Tablespoons bleach per gallon water
1.4 gallon bleach per 100 gallons water
Contact time = 1 minute | Root and O’Reilly 2012 | ≥90% effective in killing didymo; corrosive to fabric and metals |
| Other Disinfectants | 1% *Virkon Aquatic*®
10 g/liter
Contact time = 10 minutes
Greenworks dish detergent:
5% solution for 1 minute
Dawn dish detergent:
5% solution for 1 minute | Root and O’Reilly 2012 | ~80% effective
≥95% effective
≥95% effective |
Chytrid fungus

Batrachochytrium dendrobatidis

General Information:

- **Distribution**: Chytrid fungus occurs on most continents.
- **Habitat**: Zoospores are free-swimming in water column and can survive in wet mud or silt.
- **Fire Activities posing risk**: Contact with untreated water; helicopter buckets, snorkels, and other drafting gear that capture bottom sediments, mud, or aquatic plants; internal tanks and hoses that retain residual untreated water.
- **Environmental Effects**: This aquatic fungus feeds on living vertebrates and primarily affects the skin of amphibians. Because amphibians breathe and take up water through their skin, the disease causes widespread amphibian declines.

Disinfection Protocols:

<table>
<thead>
<tr>
<th>Methods of Control for Firefighters</th>
<th>Details of Method</th>
<th>References</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>HEAT</td>
<td>Johnson et al. 2003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>140°F (60°C) for 5 minutes (tested in incubators)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drying</td>
<td>Dry gear for ≥3 hours; in sunlight is best.</td>
<td>Johnson et al. 2003</td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td>Scrapping, brushing, removal of organic and plant materials.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEMICALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quaternary ammonium compounds</td>
<td>0.15% Sanicare Quat128® solution</td>
<td>Johnson et al. 2003</td>
<td></td>
</tr>
<tr>
<td>(e.g., alkyl dimethyl benzylammonium chloride [ADBAC]; diecyl dimethyl ammonium)</td>
<td>Mixing instructions: 0.02 oz per 1 gallon water ½ teaspoon per 1 gallon water Contact time = 30 seconds OR 0.04% Sparquat256® solution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methods of Control for Firefighters</td>
<td>Details of Method</td>
<td>References</td>
<td>Notes</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>------------------</td>
<td>------------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| chloride (DDAC) | Mixing instructions:
0.06 oz per 1 gallon water
0.36 teaspoon per gallon of water
Contact time = 30 seconds
OR
0.02% Green Solutions High Dilution 256® solution
Mixing instructions:
- 0.03 oz per 1 gallon water
- 0.2 teaspoon per 1 gallon water
Contact Time = 30 seconds | | |
| “Regular Clorox® Bleach” 6% sodium hypochlorite | 22% bleach solution (1.2% sodium hypochlorite)
Mixing instructions:
1 part bleach:4 parts water
26 oz bleach per 1 gallon water
20 gallons bleach per 100 gallons water
Contact time = 5 minutes
OR
7% bleach solution (0.4% sodium hypochlorite)
Mixing instructions:
9 oz bleach per 1 gallon water
7 gallons bleach per 100 gallons water
Contact time = 10 minutes | Ultra Clorox® Label (EPA Reg #5813-50) | These mixing instructions are approved by EPA specifically for chytrid fungus. |
| “Clorox® Germicidal Bleach” 8.25% sodium hypochlorite | 22% bleach solution (1.2% sodium hypochlorite)
Mixing instructions:
1 part bleach:5.5 parts water
20 oz bleach per 1 gallon water
15.4 gallons bleach per 100 gallons water
Contact time = 5 minutes | Germicidal Healthcare Clorox® label (EPA Reg. No. 5813-100) | These mixing instructions are approved by EPA specifically for chytrid fungus. |
<table>
<thead>
<tr>
<th>Methods of Control for Firefighters</th>
<th>Details of Method</th>
<th>References</th>
<th>Notes</th>
</tr>
</thead>
</table>
| Other Disinfectants | 0.1% *Virkon*[®]
1 g/liter
Contact time = ≥ 2 seconds | Johnson et al. 2003 | |
Whirling Disease

Myxobolus cerebralis

General Information:
- **Distribution:** WA, OR, CA, ID, NV, AZ, NM, UT, CO, NE, WY, ID, MT, MI, WI, OH, WV, VA, DE, MD, PA, NJ, CT, NY, MA, VT, NH, AK. For most up-to-date information on distribution, please see: https://www.invasivespeciesinfo.gov/microbes/whirling.shtml.
- **Habitat:** Free-swimming microscopic larvae occur in water column, resistant spores in mud and bottom sediments. Spores can remain viable in mud for 12 years.
- **Fire Activities Posing Risk:** Risks include: contact with untreated water; helicopter buckets, snorkels, and other drafting gear that capture bottom sediments, mud, or aquatic plants; internal tanks and hoses that retain residual untreated water.
- **Environmental Effects:** Whirling disease afflicts trout species, causing spinal distortions and population declines.

Disinfection Protocols:

<table>
<thead>
<tr>
<th>Methods of Control for Firefighters</th>
<th>Details of Method</th>
<th>References</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>HOT WATER:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>To kill spores</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>195°F (90°C) 10 minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>To kill free-swimming larvae</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 167°F (75°C) for 5 minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drying</td>
<td>Dry gear for 24hours, drying in sunlight is best to kill spores and larvae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td>Scraping, brushing, washing and removing organics (e.g., mud)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hoffman and Markiw 1977</td>
<td>Multiple sources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wagner et al. 2003</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hedrick et al. 2008</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multiple sources</td>
<td></td>
</tr>
</tbody>
</table>
Methods of Control for Firefighters

<table>
<thead>
<tr>
<th>CHEMICALS</th>
<th>Details of Method</th>
<th>References</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quaternary ammonium compounds (e.g., alkyl dimethyl benzylammonium chloride [ADBAC]; diecyl dimethyl ammonium chloride [DDAC])</td>
<td>4.6% Sanicare Quat128<sup>®</sup> solution
 Mixing instructions:
 6.4 oz per 1 gallon water
 5 gallons per 100 gallons water
 Contact time = 10 minutes.
 OR
 3.1% Sparquat256<sup>®</sup> solution
 Mixing instructions:
 - 4.3 oz per 1 gallon water
 - 3.4 gallons per 100 gallons water
 Contact time = 10 minutes
 OR
 1.8% Green Solutions High Dilution 256<sup>®</sup> solution
 Mixing instructions:
 2.5 oz per 1 gallon water
 1.9 gallons per 100 gallons water
 Contact time = 10 minutes</td>
<td>Hedrick et al. 2008</td>
<td></td>
</tr>
<tr>
<td>Bleach (e.g., Clorox<sup>®</sup>) 6% sodium hypochlorite</td>
<td>1% bleach solution (500 ppm sodium hypochlorite)
 Mixing instruction:
 1.1 oz bleach per 1 gallon water
 2.2 Tablespoons bleach per gallon water
 0.9 gallon bleach per 100 gallons water
 Contact time = 15 minutes</td>
<td>Hedrick et al. 2008 (spores)
 Wagner et al. 2003 (larvae)</td>
<td></td>
</tr>
</tbody>
</table>
General Information:
- **Distribution:** Great Lakes and St. Lawence River. For most up-to-date information on distribution, please see: https://www.invasivespeciesinfo.gov/microbes/vhs.shtml.
- **Habitat:** Viral Hemorrhagic Septicemia (VHS) is carried in the water column and in aquatic invertebrates, such as snails and crustaceans, as well as fish parts.
- **Fire Activities Posing Risk:** Most concern is with virus free floating in the water column. Risks include: contact with untreated water; helicopter buckets, snorkels, and other drafting gear that capture bottom sediments, mud, or aquatic plants; internal tanks and hoses that retain residual untreated water.
- **Environmental Effects:** Over 50 fish species are susceptible to this disease which causes significant fish die-offs.

Disinfection Protocols:

<table>
<thead>
<tr>
<th>Method of Control for Firefighters</th>
<th>Details of Method</th>
<th>References</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>HOT WATER:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>122°F (50°C) for 10 minutes</td>
<td>Jørgensen 1974, cited in Bovo et al. 2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>158°F (70°C) for 1 minute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drying</td>
<td>Dry gear for 4 days at 70°F (21°C)</td>
<td>Pietsch et al. 1977 (for IHNH virus). (Bovo et al. 2005)</td>
<td>IHNV and VHSV are closely related viruses. It is presumed that inactivation studies on one virus may pertain to the other.</td>
</tr>
</tbody>
</table>
Method of Control for Firefighters

<table>
<thead>
<tr>
<th>CHEMICALS</th>
<th>Details of Method</th>
<th>References</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical</td>
<td>Thoroughly wash and dry</td>
<td>Multiple sources</td>
<td></td>
</tr>
<tr>
<td>CHEMICALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quaternary ammonium compounds</td>
<td>0.4% Green Solutions High Dilution 256 solution</td>
<td>EPA label Reg. No. 1839-167 (2010)</td>
<td>These mixing instructions are approved by EPA for closely related viruses in the same family, but not specifically for VHS.</td>
</tr>
<tr>
<td>(e.g., alkyl dimethyl benzylammonium chloride [ADBAC]; diecyl dimethyl ammonium chloride [DDAC])</td>
<td>Mixing instructions: ½ oz per 1 gallon water 0.4 gallon per 100 gallons water Contact time = 10 minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bleach (e.g., Clorox®)</td>
<td>0.2% bleach solution (98 ppm sodium hypochlorite)</td>
<td>Ahne 1982, cited in Bovo et al. 2005</td>
<td></td>
</tr>
<tr>
<td>6% sodium hypochlorite</td>
<td>Mixing instructions: 0.26 oz/1 gallon water ~ ½ tablespoon/1 gallon water 26 oz/100 gallons water 0.2 gal/100 gallons water Contact time: 2 minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Agents</td>
<td>0.5% - 1% Virkon Aquatic®</td>
<td>Yanong and Erlacher-Reid 2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 g/liter to 10 g/liter</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contact time = 10 minutes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Spring Viremia of Carp

Rhabdovirus carpio

General Information:
- **Distribution:** NC, IL, WI OH, MN, MO, WA, Ontario. For most up-to-date information on distribution, please see: https://www.glerl.noaa.gov/res/Programs/glansis/nas_database.html.
- **Habitat:** Spring Viremia of Carp (SVC) is carried in the water column and survives long periods in wet mud.
- **Fire Activities posing risk:** Most concern is with virus free floating in the water column. Risks include: contact with untreated water; helicopter buckets, snorkels, and other drafting gear that capture bottom sediments, mud, or aquatic plants; internal tanks and hoses that retain residual untreated water.
- **Environmental Effects:** This virus is a major cause of disease and death in carp and 50 other fish species.

Disinfection Protocols:

<table>
<thead>
<tr>
<th>Method of Control for Firefighters</th>
<th>Details of Method</th>
<th>References</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>HOT WATER: 122°F (50°C) for 5 minutes</td>
<td>Ahne 1976, cited in Bovo et al. 2005</td>
<td></td>
</tr>
<tr>
<td>Drying</td>
<td>>28 days at 70°F (21°C)</td>
<td>Ahne 1982</td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td>Scrapping, brushing, washing and removing organics (e.g., mud)</td>
<td>Multiple sources</td>
<td></td>
</tr>
<tr>
<td>CHEMICALS</td>
<td>0.4% Green Solutions High Dilution 256 solution</td>
<td>EPA label Reg. No. 1839-167 (2010)</td>
<td>These mixing instructions are approved by EPA for closely related viruses in the same family, but not specifically for SVC.</td>
</tr>
<tr>
<td>Method of Control for Firefighters</td>
<td>Details of Method</td>
<td>References</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>-----------------------------</td>
<td>----------------------------</td>
</tr>
</tbody>
</table>
| Bleach (e.g., Clorox®) 6% sodium hypochlorite | *0.1% bleach solution* (55 ppm sodium hypochlorite)
Mixing instructions:
¼ teaspoon per 1 gallon water
11.5 oz per 100 gallons water
Contact time: 2 minutes | Ahne 1982, cited in Bovo et al. 2005 | |
| Other Agents | *0.5% to 1% Virkon Aquatic®*
5 g/liter to 10 g/liter for 10 minutes
0.1% *Virkon Aquatic®*
1 g/liter for 30 minutes | Bowker et al. 2012 | |
Port Orford Cedar Root Disease (Phytophthora lateralis)
&
Sudden Oak Death (Phytophthora ramorum)

General Information:
- **Port Orford Cedar Root Disease Distribution**: WA, OR, CA. For most up-to-date information on distribution, please see: http://www.issg.org/database/welcome/.
- **Sudden Oak Death Distribution**: CA, OR. For most up-to-date information on distribution, please see: http://www.issg.org/database/welcome/.
- **Habitat**: Spores swim in standing water and can be carried large distances in flowing water; they also occur in soil.
- **Fire Activities Posing Risk**: Most concern is with spores carried in untreated water. Risks include: contact with untreated water; helicopter buckets, snorkels, and other drafting gear that capture bottom sediments, mud, or aquatic plants; internal tanks and hoses that retain residual untreated water.
- **Environmental Effects**: Port Orford cedars of all sizes may be killed by the root disease. Sudden oak death affects other trees as well as oaks, leading to widespread forest destruction.

Disinfection Protocols:

<table>
<thead>
<tr>
<th>Method of Control for Firefighters</th>
<th>Details of Method</th>
<th>References</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Regular Clorox® Bleach” 6% sodium hypochlorite</td>
<td>Add 1 gallon bleach to 1000 gallons of drafted water (~50 ppm sodium hypochlorite). Prepare the mixture at least 5 minutes prior to application for dust abatement, fire suppression, and cleaning vehicles and logging, road building, and maintenance equipment.</td>
<td>Ultra Clorox® Label (EPA Reg. No. 5813-50) AND Southwest Oregon Interagency Fire Management Plan (USDA Forest Service 2013)</td>
<td>¹See note below for application.</td>
</tr>
<tr>
<td>Method of Control for Firefighters</td>
<td>Details of Method</td>
<td>References</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------------------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>“Clorox® Germicidal Bleach” 8.25% sodium hypochlorite</td>
<td>Add ¾ gallon bleach to 1000 gallons of drafted water (~50 ppm sodium hypochlorite). Prepare the mixture at least 5 minutes prior to application for dust abatement, fire suppression, and cleaning vehicles and logging, road building, and maintenance equipment.</td>
<td>Germicidal Healthcare Clorox® label (EPA Reg. No. 5813-100)</td>
<td></td>
</tr>
</tbody>
</table>

1 Locate vehicle washing stations (with chlorinated water) where water will not run into streams. When refilling tenders/engines, fill with water first, pull 150’ away from the stream (or where overland flow will not run back into the stream), and then add the chlorine. Avoid dropping buckets of or directly releasing chlorine-treated water into streams or wetlands. Don’t treat water from streams that are uninfected with the root rot disease, unless it is for use at washing stations (to avoid unnecessary use of chlorine). (Southwest Oregon Interagency Fire Management Plan 2013)
Aquatic Invasive Plants

General Information:

- **Distribution:** Varies based on species. For most up-to-date information on distribution, please see: https://www.invasivespeciesinfo.gov/aquatics/main.shtml.

- **Habitat:** Aquatic plants are usually confined to shorelines and relatively shallow portions of waterbodies, though plant pieces can float throughout.

- **Fire Activities Posing Risk:** Contact with untreated water; helicopter buckets, snorkels, and other drafting gear that capture bottom sediments, mud, or aquatic plants; internal tanks and hoses that retain residual untreated water.

- **Environmental Effects:** Non-native aquatic plants clog waterways and threaten the diversity and survival of native species.

Disinfection Protocols:

<table>
<thead>
<tr>
<th>Method of Control for Firefighters</th>
<th>Details of Method</th>
<th>References</th>
<th>Notes</th>
</tr>
</thead>
</table>
| Temperature | HOT WATER PRESSURE WASH:
 ≥140°F (60°C) for 2 minutes; inspect and re-treat as needed. | Blumer et al. 2009 | This study is specific to Eurasian watermilfoil, but lethal temperatures likely comparable for other submerged species. |
| Mechanical | Scrapping, brushing, high pressure washing and mud removal. Some seeds may remain viable after washing, so disposal or filtration of treated water is recommended. | Multiple sources | |

Guide to Preventing Aquatic Invasive Species Transport by Wildland Fire Operations
REFERENCES

Comeau, S., Rainville, S., Baldwin, W., Austin, E., Gerstenberger, S., Cross, C., and Wai Hing Wong. 2011. Susceptibility of quagga mussels (Dreissena rostriformis bugensis) to hot-water sprays as a means of watercraft decontamination, Biofouling, 27: 3, 267-274.

Modovski, C. 2011. [Personal communication]. Environmental Scientist, Labat Environmental, Broken Arrow, OK.

Morse, J. 2009. Assessing the effects of application time and temperature on the efficacy of hot-water sprays to mitigate fouling by *Dreissena polymorpha* (zebra mussel Pallas). Biofouling 25(7):605-610.

