Skip to main content

Know Your Fire Shelter

Understanding how the fire shelter protects you and the factors that limit its performance will help you decide how best to deploy your shelter (see Figure 1 and 2).

Parts of the fire shelter: carry case, liner, pvc bag, pull strap, red tear strip.

Figure 1 Labeled parts of the complete fire shelter.

Illustration of effects of radiant vs. convective heat on a fire shelter: ground cooling, radiant heat, 95 percent reflected, convective heat (from flames and hot gases), 100 percent absorbed)

Figure 2 Effects of radiant vs. convective heat on a fire shelter.

 

How the Fire Shelter Works

“I have always wondered if a little piece of foil would protect me, but I am a believer now. Fire shelters really work.”

 

A person's hand pulling a cutaway to show the inner and outer shell of a fire shelter.

Figure 3 Cut away to show the inner and outer shell of the fire shelter.

The fire shelter protects primarily by reflecting radiant heat and trapping breathable air. The shelter is composed of two layers (see Figure 3). The outer layer is aluminum foil bonded to woven silica cloth. The foil reflects radiant heat, and the silica material slows the passage of heat to the inside of the shelter. An inner layer of aluminum foil laminated to fiberglass prevents heat from reradiating to the person inside the shelter and protects the occupant from exposure to any gases released from the outer layer as it is heated up. When these layers are sewn together, the air gap between them offers further insulation.

The outer layer of foil reflects about 95 percent of the radiant heat that reaches it. Because only 5 percent of radiant heat is absorbed into the shelter materials, the temperature of the material rises slowly. Unlike radiant heat, convective heat (from flames and hot gases) is easily absorbed by the fire shelter, allowing the temperature of the material to rise rapidly.

Types of Heat:

Radiant heat travels in a straight line through space without heating the space itself. It turns into heat when it contacts a cooler surface. When you stand close to a campfire, radiant heat warms you. No air movement is required for the transfer of radiant heat.

Convective heat requires air movement. Think of it as a blast of hot air. When flames or hot gases move past a surface, the hot air molecules transfer their heat to that surface. The hotter the air and the faster the air movement, the greater the convective heating.

When the material reaches about 500 °F, the adhesive that bonds the layers begins to break down. The layers can separate, allowing the foil to be torn by turbulent winds. Without the foil, the shelter loses much of its ability to reflect radiant heat. The silica material will slow heat transfer but offers significantly less protection without the foil. Therefore, it is important to select the best available site for deployment, one that will minimize the exposure to convective heat and flame contact as much as possible.

Fire Shelter Sizing

The fire shelter is available in two sizes, regular, and large (see Figure 4 and 5).

Two blue shelter carry cases side-by-side.

Figure 4 Large and regular fire shelters in carry cases.

Two shelters in transparent carry cases side-by-side.

Figure 5 Side by side comparison of the large and regular fire shelters.

Sizing
Shelter sizeRegularLarge
Weight4.4lbs5.2lbs
Folded dimensions5 ¼” x 3 ¾” x 8 ¼” ± ½”5 ¼” x 3 ¾” x 9 ½” ± ½”
Deployed dimensions86” x 15.5” x 31”96” x 19.5” x 33”
Deployed volume28,260 cu in42,045
 

The two sizes of fire shelter are easily distinguishable by the yellow pull strap (regular shelter) or the orange pull strap (large shelter) with LARGE stenciled on it, both are sewn to the polyvinyl chloride (PCV) bag. The large shelter fits easily into the hard plastic liner and case used for the regular shelter, however, there is a difference of 0.6 pounds between the regular and large shelters.

The large shelter was developed for firefighters 6’1” and taller or whose girth is greater than 53 inches (see Figure 6 and 7). The large shelter will provide better protection for larger firefighters by increasing the amount of insulative air inside the shelter and reducing body contact with shelter material.

Two shelters side-by-side on a grassy field.

Figure 6 Deployed regular (left) and large (right) fire shelters.

Two metallic color, oval shaped fire shelters, on the ground, side-by-side.

Figure 7 Overhead view of deployed regular (left) and large (right) fire shelters.

To determine if a regular shelter is the right size for you, get inside a regular practice shelter (see Figure 8). When you are inside a shelter you should be able to:

  • Lie face down in the shelter with your helmet and boots on without pushing against the ends of the shelter.
  • Lie in the shelter with your arms through the hold down straps.
  • Fold your elbows next to your chest and protect the sides of your face with your hands with only minimal contact with the sides of the shelter.

Man in fire-fighter uniform wearing a helmet, laying on top of fire-shelter across the length of the shelter.

Figure 8 Appropriately sized shelter.

If you do not meet any of the above bullets, you should strongly consider carrying a large fire shelter.

Can the Large Be Too Big?

In trials using fans to generate wind, individuals under 5’7” had difficulty deploying and holding down the large shelter. Individuals under 5’7” whose girth is larger than 53 inches should practice with a large fire shelter in strong wind to determine which shelter is right for them. Firefighters under 5’7” can use a large shelter in an emergency if a regular is unavailable. Smaller firefighters should:

  • Hold the large fire shelter down by placing their feet far into one end of the shelter to prevent the foot end from catching in the wind and exposing their body to hot gases.
  • Place their arms through the hold down straps up to the elbows.
  • Gather the floor material with their hands to help control the shelter and to hold the edge down to the ground as best as possible.

Ensuring you have the appropriate shelter is in your best interest. If you are near the height or girth dimensions for a large shelter, take the time to determine which shelter is best for you. Your safety could be at stake!

 

NWCG Latest Announcements

Updated! L-280, Followership to Leadership (Instructor-led) Course

Date: October 3, 2024
Questions? Please contact:
Leadership Committee

NWCG is pleased to announce the updated L-280, Followership to Leadership (Instructor-led) course is now available. L-280 is intended for operational personnel at the Firefighter Type 1 level, and for individuals pursuing Leadership Level 2, New Leader. 

This instructor-led course is a primer on leadership and the second formal course in the Wildland Fire Leadership Development Program. It helps emerging leaders build the confidence, skills, and mindset needed to lead effectively in high-risk environments. 

For more information about leadership development and available courses, visit the Leadership Committee Web Portal.

References:

L-280, Followership to Leadership (Instructor-led)

Wildland Fire Leadership Development Program

Wildland Fire Learning Portal

Equipment Advisory 25-01: Pre-2006 Fire Shelter Degradation and Discontinuation of Use

Date: Sept 26, 2025
Questions? Please contact:
Equipment Technology Committee 

The Equipment Technology Committee (ETC) has released Equipment Advisory 25-01: Pre-2006 Fire Shelter Degradation and Discontinuation of Use. This advisory recommends all pre-2006 fire shelters should be removed from service by January 1, 2026.

This advisory recommends firefighters and fire managers to:

  • Inspect fire shelters immediately
  • Replace and destroy any pre-2006 shelters (identified by white or pink insert label)
  • Order replacements as needed

For further details, please refer to the complete advisory. 

References:

Equipment Advisory 25-01: Pre-2006 Fire Shelter Degradation and Discontinuation of Use

NWCG Fire Inspection Flowchart, PMS 411-1

NWCG Alerts

NEW! S-219, Firing Operations (Blended) Now Available

Date: Sept 11, 2025
Questions? Please contact:
Fuels Management Committee 

The S-219, Firing Operations (Blended) course is now available on the Wildland Fire Learning Portal. Developed through the Incident Performance and Training Modernization (IPTM) effort, this training supports individuals working towards Firing Boss, Single Resource (FIRB) incident qualifications.

This blended course combines online and instructor-led training to provide students with the knowledge and skills required to perform the duties of the FIRB, as described in the NWCG Incident Position Standards for Firing Boss, Single Resource, PMS 350-105.

Any changes to qualification pathways will take effect with the next update of the NWCG Standards for Wildland Fire Position Qualifications, PMS 310-1, scheduled for January 2026.

References:

S-219, Firing Operations (Blended)

NWCG Firing Boss, Single Resource Position Page

Wildland Fire Learning Portal

NWCG Committees Observe Suicide Prevention Awareness Week: September 7-13, 2025

Date: Sep 5, 2025
Questions? Please contact:
Mental Health Subcommittee

The NWCG Mental Health Subcommittee (MHSC) and Risk Management Committee (RMC) recognize the unique challenges and demands faced by the wildland fire community. The MHSC and RMC know that we are all stronger together and believe in fostering a culture of support, understanding, and resilience.

Suicide Prevention Awareness encourages us to actively connect with and support each other. For more information that could make a difference for yourself or someone else please review the materials and resources provided for the 2025 Suicide Prevention Awareness Week.

References:

2025 Suicide Prevention Awareness Week Materials and Resources