Skip to main content

PMS 437

Active Crown Fire Behavior

  1. Definitions
  2. Active Crown Fire Rate of Spread and Flame Length
  3. Estimating Active Crown Fire Spread Rate With Surface Shrub Models

Definitions

Crown Fraction Burned (CFB) is a theoretical concept that is used to model and classify crown fire. It may be observable after the fact in burn severity assessments.

Image
This graph compares Crown Fire spread rates utilizing several surface shrub fuel models and compares them to the Rothermel Crown Fire Spread Model.

Passive Crown Fire (Intermittent or Persistent Torching) occurs where surface fire intensity is sufficient to ignite tree crowns, individually or in groups, but winds are not sufficient to support propagation from tree to tree. CFB between 0.10 and 0.90.

Active Crown Fire occurs where surface and crown fire energy are linked. Surface intensity is sufficient to ignite tree crowns, and fire spread and intensity in the tree crowns encourages surface fire spread and intensity. CFB at least 0.90.

Independent Crown Fire occurs (rarely) where tree crown loading and flammability is sufficient to carry fire without surface fire contribution under ambient weather and wind conditions. CFB generally approaching 1.0.

Isolated Tree Torching should not be considered crown fire, though it may be an indicator of potential later in the burn period. It usually occurs due to anomalies in surface fire behavior due to jackpots of surface fuel, isolated terrain features, or brief wind gusts. CFB is less than 0.10.

Return to Top

Active Crown Fire Rate of Spread and Flame Length

After the 1988 fire season, Rothermel (1991) developed an empirical model for estimating crown fire spread rates and fireline intensities, referencing several fires from the Rocky Mountains in its development. Based on fire behavior in Fuel Model 10 (FB10), the calculation is essentially:

ROSActiveCrownFire = 3.34*ROSFuelModel10

(Assuming MFWS = 20ft windspeed*0.4)

These graphs, using season, slope, and 20ft windspeed, provide rough estimates of active crown fire spread rates using the Rothermel Crown Fire Spread model.

No Slope

Image
Using the season of the year and the 20-ft windspeed, this graph helps the analyst estimate crown fire spread rate for fires on generally level or low slope landscapes.

50% Slope

Image
Using the season of the year and the 20-ft windspeed, this graph helps the analyst estimate crown fire spread rate for fires on steep slopes of approximately 50%.

100% Slope

Image
Using the season of the year and the 20-ft windspeed, this graph helps the analyst estimate crown fire spread rate for fires on steep slopes of approximately 100%.

Return to Top

Estimating Active Crown Fire Spread Rate with Surface Shrub Models

In fireline assessments, it may be necessary to make quick estimates of crown fire spread based on simple inputs.  Simple lookup tables or graphs like those above provide rough estimates. Anderson (1982), when describing the original 13 surface fuel models, identified several shrub models as representative of crown fire behavior in several classic types:

  • FM4 (Chaparral) for New Jersey Pine Barrens and Lake States Jack Pine.
  • FM6 (Dormant Brush) for Alaska Spruce Taiga.
  • FM7 (Southern Rough) for Alaska Black Spruce/Shrub Communities.

Bishop (2010), in developing the Fireline Assessment Method (FLAME), averaged spread rates for fuel models 5, 6, and 7 to estimate crown fire spread.

Fuel Models sh5 (145) and sh7 (147) have been used in the same manner in spatial modeling in different situations.

This graphic demonstrates the similarity in spread rates produced by the Rothermel Crown Fire Spread Rate (crown) and several surface shrub fuel models.  

Image
This graph compares Crown Fire spread rates utilizing several surface shrub fuel models and compares them to the Rothermel Crown Fire Spread Model.

Caution: Using surface fuel models to represent crown fire behavior may not accurately provide for the calculation of Crown Fraction Burned (CFB) or the modeling of increasing spread due to passive crown fire (torching and spotting) behavior in spatial fire analyses. It may also over-estimate fire spread and intensity under moderated environmental conditions.

Page Last Modified / Reviewed:

NWCG Latest Announcements

NWCG Training Catalog now on Wildland Fire Learning Portal

Date: April 25, 2023
Contact: NWCG Training  

The National Wildfire Coordinating Group (NWCG) has migrated the training catalog from the NWCG website to the Wildland Fire Learning Portal (WFLP) as part of our ongoing efforts to streamline processes and improve efficiency. To facilitate this transition, the training catalog remains available on www.nwcg.gov through April 2024.

Starting May 2024, the training catalog will no longer be accessible on www.nwcg.gov. However, you can still access the complete training catalog by logging in as a guest to the WFLP.

References:

Wildland Fire Learning Portal

 

NWCG Website Migration

Date: April 01, 2024
Contact: NWCG Webmaster

The National Wildfire Coordinating Group is thrilled to announce a significant upgrade to https://www.nwcg.gov, involving a comprehensive redesign of over 7,000 web pages. This enhancement is focused on improving user experience. The migration to the new NWCG website will commence on April 2, 2024, starting at noon EST and is expected to take a few hours. 

During the migration period, as the www.nwcg.gov domain-name-location updates across the Internet, you might encounter either the current or the new site depending on your location. We request your patience during this transition. If you are not redirected to the new site by April 3, 2024, we recommend clearing your browser’s cache and refreshing the page.

Please note that while navigating the revamped website, there may be instances of broken links or errors. Our dedicated web migration team has made significant efforts to minimize such issues prior to launch and will promptly address any that arise via use of analytic reports. We value your patience and understanding as we work towards enhancing your overall website experience.

WFSTAR 2023 Year in Review and 2024 Core Component Module Packages Available

Date: March 6, 2024
Contact: Joe Schindel 

The 2023 Fire Year in Review module and 2024 Core Component Module Packages for RT-130, Wildland Fire Safety Training Annual Refresher (WFSTAR) are now available on the NWCG website. The 2024 Core Component Module Package provides all content needed to deliver RT-130.

 

References:

WFSTAR 2023 Fire Year in Review module

WFSTAR 2024 Core Component Module Packages

2024 NWCG Executive Board Annual Letter

Date: March 6, 2024
Contact: NWCG

The NWCG Executive Board is privileged to share with you the 2024 NWCG Executive Board Annual Letter. As we look into the future and navigate an incredibly complex and dynamic environment, we must remain focused on our mission while actively engaging in national conversations regarding numerous wildland fire initiatives. In 2024, we prioritize building upon our successes and committing to continuous improvement. Key priorities and considerations for this year include: 

  • Determining Core Workload
  • Ensuring Incident Performance and Training Modernization (IPTM) Success
  • Improving Efficiencies
  • Firefighter Health and Wellness
  • Engagement in National Conversations

Together we will continue to make significant strides in the challenging and vital work that lies ahead. 

 

References:

2024 NWCG Executive Board Annual Letter