Skip to main content

Surface Fire Behavior Nomograms and Nomographs

  1. Instructions for Nomograph Use (Scott 2007)
  2. Instructions for Nomogram Use (Rothermel 1983)

Instructions for Nomograph Use (Scott 2007)

Reference: Scott, Joe H. 2007. Nomographs for estimating surface fire behavior characteristics. Gen. Tech. Rep. RMRS-GTR-192. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 119 p

Each fuel model includes a duplicate set of effective windspeed protractor and fire behavior nomograph, one for low windspeeds and one for high windspeeds. Select the one with applicable windspeeds.

Example Nomograph

Image
Example Nomograph. Updated in 2007 to include versions for all 53 models.

Inputs Required:

  1. Fuel Model.
  2. Midflame Windspeed and direction, azimuth clockwise from upslope.
  3. Slope percent.
  4. Dead and Live Fuel Moistures.

Determine Effective Windspeed (EWS) - Low or High

Use the left side nomograph, shown above, if the situation includes cross slope winds.

  1. Plot the slope vector (a) in the upslope direction to the hash representing the slope percent. Interpolate if necessary.
  2. Plot the wind vector (b) using the concentric circle to for the input windspeed and the azimuth above for direction.
  3. Plot parallel vectors (c and d) and resultant vector (e). Read resulting windspeed (e) and direction (f).

Estimate Head Fire Rate of Spread and Flame Length

If the fuel model includes a live fuel component, use the nomograph that references the appropriate live fuel moisture. Otherwise, there is only one nomograph, shown on right.

  1. Using the input dead fuel moisture, draw vertical line (g) to the estimated EWS curve.
  2. Read the flame length from the embedded curves at the intersection (j). Interpolate between lines if necessary.
  3. Draw horizontal line (h) to the left axis and read the Rate of Spread at intersection (i).

Return to Top

Instructions for Nomogram Use (Rothermel 1983)

Reference: Rothermel, Richard C. How to predict the spread and intensity of forest and range fires. Gen. Tech. Rep. INT-143. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest, and Range Experiment Station; 1983. 1 61 p. 

Download Nomograms Here 

Return to Top

Unlike the newer nomographs, the original surface fire behavior nomograms have several limitations:

  • These nomograms are only available for the original 13 fuel models.
  • They are intended for use with wind blowing within ±30 degrees of upslope. Use in vectoring is possible, though it is not outlined here.

Inputs Required

  1. Fuel model.
  2. Midflame windspeed.
  3. Percent slope.
  4. Dead fuel moisture (use 1-hr).
  5. Live fuel moisture for fuel models 2, 4, 5, 7, & 10.

Select the Appropriate Windspeed (Low/High) Nomogram

The numbered steps below correspond to the labeled lines on the example nomograms.

Part I: Estimate Effective Windspeed (For All Fuel Models)

  1. In the lower left quadrant, draw a vertical line from percent slope value to intersect midflame windspeed curve. Draw a horizontal line to the left axis and read effective windspeed.
  2. In the lower right quadrant, identify and highlight the appropriate effective windspeed line. Interpolate by adding a line for effective windspeed from step1 above if it is between existing lines.

Return to Top

Part II: Fuel Moisture

For FM 1, 3, 6, 8, 9, 11, 12, 13 with only dead fuel.

  1. In the upper left quadrant of the nomogram, identify and highlight the appropriate dead fuel moisture line based on the input value provided. Interpolate by drawing a new line between existing lines if necessary.

For FM 2, 4, 5, 7, 10 with live fuel.

  • Using the two upper quadrants, locate the appropriate dead fuel moisture value on the two outer vertical axes (highlighted). Connect with a horizontal line.
  • Connect the point where the horizontal line intersects the live fuel curve in the upper left quadrant to the origin point, creating a straight line.
  • Using the input live fuel moisture provided, identify and highlight the appropriate S-curve in the upper right quadrant. Interpolate by adding a new line between existing lines if necessary.

At this point, turning lines have been identified in all 4 quadrants (including the S-curve in the upper right quadrant and the default corner to corner line in the lower left). The nomogram is prepared for Part III.

Part III: Estimating Fire Behavior

With the preparations in parts I and II, turning lines have been highlighted in the lower right quadrant and the upper left quadrant, as well as the appropriate S-curve in the upper right quadrant for fuel models with live fuels.

  • Begin in the upper right quadrant. Draw a horizontal line from dead fuel moisture to the highlighted fuel moisture turning line (s-curve).
  • From the intersection, draw a vertical line down to the turning line in the lower right quadrant (highlighted in step 2).
  1. From the intersection with the turning line in the lower right, draw a horizontal line to the turning line in the lower left quadrant.
  2. From the intersection with the turning line in the lower left quadrant, draw a vertical line up to the turning line in the upper left quadrant (highlighted in step 3).
  3. From the intersection with the turning line in the upper left quadrant, draw a horizontal line to the right until it intersects the vertical line drawn in step 4.

Part IV: Reading Fire Behavior Outputs

Read Heat Per Unit Area where the vertical line from step 2 intersects its axis in the upper right quadrant.

  • In the first example (Dead Fuel Only), the Heat Per Unit Area is estimated at approximately 750 BTU/sq. ft.
  • In the second example (Dead & Live Fuels), the Heat Per Unit Area is estimated at approximately 215 BTU/sq. ft.

Read Rate of Spread where the horizontal line from step 5 intersects its axis in the upper right quadrant.

  • In the first example (Dead Fuel Only), the Rate of Spread is estimated at approximately 7 chains per hour.
  • In the second example (Dead & Live Fuels), the Rate of Spread is also estimated at approximately 7 chains per hour.

Read Flame Length and Fireline Intensity at the final intersection produced in step 5.

  • In the first example (Dead Fuel Only), the intersection between lines 4 and 7 comes between the Flame Length/Fireline Intensity contour lines 3/60 and 4/100. It could be estimated as 4 ft or 90 BTU/ft/sec.
  • In the second example (Dead & Live Fuels), the intersection between lines 4 and 7 comes between the Flame Length/Fireline Intensity contour lines 2/25 and 3/60. It could be estimated as 2 ft or 30 BTU/ft/sec.

Example Nomogram for Dead Fuel Only (Fuel Models 1, 3, 6, 8, 9, 11, 12, 13)

Image
Example Surface Fire Behavior Nomogram for fuel models with dead fuels only.

Example Nomogram Using Dead & Live Fuels (Fuel Models 2, 4, 5, 7, 100)

Image
Example Surface Fire Behavior Nomogram for fuel models with both live and dead fuels.

Return to Top

Share on Social Media

NWCG Latest Announcements

NEW! S-320, Introduction to Incident Management Teams (Blended) Available Now

Date: December 18, 2025
Questions about RT-130? 
Please contact: Incident and Position Standards Committee

NWCG is excited to announce that S-320, Introduction to Incident Management Teams (Blended) is now available on the Wildland Fire Learning Portal!

This blended course combines online learning with instructor-led training, designed for individuals seeking to build leadership skills and gain experience in incident management.

Students are required to complete the prerequisite trainings ICS-100, Introduction to Incident Command System (ICS), ICS-200, Basic ICS for Initial Response, and ICS-700, An Introduction to the National Incident Management System (NIMS) prior to attending S-320.

References:

S-320, Introduction to Incident Management Teams (Blended)

Wildland Fire Learning Portal

New! Ransom Road WFSTAR Module

Date: December 16, 2025
Questions about RT-130? 
Please contact: NWCG Audiovisual Specialist

NWCG is excited to announce the release of the new Ransom Road Fire Module to RT-130, Wildland Fire Safety Training Annual Refresher (WFSTAR).

This module features a firsthand account from Rob Lee, official reports, and animated maps of the Ransom Road Fire which occurred on June 8, 1981, in Florida's Merritt Island National Wildlife Refuge.

The module is available now in NWCG's RT-130, WFSTAR Catalog.

References:

WFSTAR Catalog

Wildland Fire Lessons Learned Center

Call for Nominations: Paul Gleason Lead by Example Award

Date: December 11, 2025
Questions? Please contact:
 Leadership Committee 

Do you know someone working in wildland fire who strives to make positive change and is undeterred by obstacles or setbacks? Now is your chance to give that person the acknowledgment they deserve by nominating them for a Paul Gleason Lead by Example Award.

This award, is presented by the NWCG Leadership Committee to remember Paul Gleason's contributions to the wildland fire community and to recognize individuals or groups that exhibit the same spirit and dedication to leadership – those who lead by example.

Nominations can be submitted via email with an attached Lead by Example Form to BLM_FA_Leadership_Feedback@blm.gov or through the online form

Tips for successful nominations and more information can be found on the Lead by Example webpage. All nominations must be submitted by December 31, 2025.

References:

Paul Gleason Lead By Example Award 

Paul Gleason Lead by Example Award Nomination Form 2025 

Leadership Committee 

Coming Soon! Ransom Road WFSTAR Module

Date: December 9, 2025
Questions about RT-130? 
Please contact: NWCG Audiovisual Specialist

On June 8, 1981, the Ransom Road Fire swept across Merritt Island National Wildlife Refuge in Florida, marking a defining moment in wildland fire management. This event led directly to the creation of the U.S. Fish and Wildlife Service's professional fire program.

Later this month, NWCG will release a compelling video that brings the Ransom Road Fire to life through firsthand accounts, official reports, and animated maps. Rob Lee, second on site during the deployment, shares his powerful recollections of that day. 

This video will be going live later this month in NWCG's RT-130, Wildland Fire Safety Training Annual Refresher (WFSTAR) Catalogue.

References:

WFSTAR Catalogue 

Wildland Fire Lessons Learned Center