Skip to main content

3.5 Drafting Guidelines

It is important to know the difference in elevation between the pump and the water source when drafting water from a pond or stream. When drafting water, the air at atmospheric pressure is removed from the hose line, creating a vacuum (negative pressure) within the pump chamber. The atmospheric pressure (weight of air) on the water's surface forces the water up through the suction hose to the pump.

The maximum height to which an engine or pump can lift water is determined by the atmospheric pressure. At sea level, the atmosphere exerts an average pressure of 14.7 pounds per square inch (psi). Atmospheric pressure will vary due to changes in the weather. However, these changes tend to moderate themselves so that the average pressure will tend to go back toward 14.7 pounds per square inch. That is why it is safe to use this value of 14.7 pounds per square inch as a constant for calculations.

Example 1 - What would be the maximum height of water that a pressure of 14.7 pounds per square inch would be capable of sustaining?

Step 1. Find the appropriate conversion in Table 3.1.
1 psi = 2.304 ft

Step 2. Set up the cancellation table so all units will cancel, except the desired unit, feet, to calculate the lift created by 14.7 pounds per square inch. 
cancellation table

The atmospheric pressure would be capable of sustaining a column of water 33.9 feet in height.
 

If a pump could produce a perfect vacuum, the maximum height to which it could lift water at sea level would be 33.9 feet, as shown in Example 1. This number is the maximum theoretical lift, but in practice no pump built can produce a perfect vacuum. A fire engine in fairly good condition can lift water two-thirds of the theoretical lift, 2/3 × 33.9 = 22.5 feet. This height is called the maximum attainable lift. With an increase in elevation above sea level, atmospheric pressure decreases, thus reducing the vertical distance from the water source where drafting can be done effectively.
 

ELEVATION EFFECTS

For every 1,000 feet of change in elevation, there is a loss of 1 foot in suction or lift and a 0.5 pounds per square inch decrease in atmospheric pressure. 

Example 2 - An engine can lift water 22.5 feet at sea level. The same engine is driven to a fire at an elevation of 2,000 feet above sea level. What lift can the engine produce at this elevation?

Step 1. Use the conversion given for elevation change. A 1-foot loss = 1,000-foot elevation change

Step 2. Set up the cancellation table so all units will cancel, except the desired unit, feet, to calculate the loss in lift for a 2,000-foot elevation. (See Section 2.1 to review unit cancellations if desired.)

cancellation table

Step 3. Subtract the resulting value from the number of feet that can be lifted at sea level. 22.5 ft - 2 ft = 20.5 ft

This pump can lift 20.5 feet of water at a 2,000-foot elevation.
 

Example 3 - Larry is 16 feet above his water source, at an elevation of 4,000 feet. Will Larry still be able to draft water?

Step 1. Find the appropriate conversion/estimation in Table 3.1 to calculate the decrease in possible lift. At sea level, attainable lift is 22.5 feet.

Step 2. Set up the cancellation table so all units will cancel, except the desired unit, feet (loss), to calculate the loss in lift. Due to the elevation, the sustainable lift decreases by:

A 1,000-foot increase in elevation = 1-foot loss

cancellation table

Step 3. Calculate the adjusted attainable lift. The maximum attainable lift would now be: attainable lift - decrease due to elevation = adjusted attainable lift 22.5 ft - 4 ft = 18.5 ft

Step 4. Determine whether drafting is still possible. attainable lift = 18.5 ft so Larry would still be able to draft water up to a vertical distance of 18.5 feet. He desires to lift at least 16 ft.

18.5 feet - 16 feet = 2.5 feet above Larry's current location.

Yes, Larry is able to draft 16 feet above his water source.

NWCG Latest Announcements

Incident Position Standards and Next Generation Position Task Books Now Available for FBAN and LTAN

Date: Aug 13, 2025
Questions? Please contact:
Fire Behavior Subcommittee

NWCG is excited to announce that Incident Position Standards and Next Generation Position Task Books are now available for Fire Behavior Analyst (FBAN) and Long Term Fire Analyst (LTAN).

The Performance Support Packages for these positions were developed as part of the Incident Performance and Training Modernization (IPTM) effort. These resources support trainees, qualified personnel, and evaluators in their respective roles.

Any changes to qualification pathways will take effect with the next update of the NWCG Standards for Wildland Fire Position Qualifications, PMS 310-1, scheduled for January 2026.

References:

NWCG Fire Behavior Analyst Position Page

NWCG Long Term Fire Analyst Page

ETC/RMC Safety Bulletin: 25-001 New Guidance on Laundering Wildland Fire Clothing to Reduce Contamination

Date: Aug 8, 2025
Questions? Please contact:
Equipment Technology Committee
 Risk Management Committee

The Equipment Technology Committee (ETC) and the Risk Management Committee (RMC) have issued Safety Bulletin 25-001: Laundering to Decontaminate Wildland Fire Clothing. Recent research revealed that wildland fire flame-resistant pants and shirts can be contaminated with chemicals from combustion byproducts, including carcinogens, and that common laundering practices can effectively remove these harmful contaminants from wildland firefighter clothing more effectively than previously understood. It is recommended to decontaminate wildland fire clothing as frequently as possible. 

Frequently Asked Questions about this new information and how to implement recommendations can be found on the NWCG Alerts page. Read the complete ETC/RMC Safety Bulletin: 25-001 to learn more. 

References:

NWCG Alerts

ETC Safety Bulletin: 25-001

Frequently Asked Questions (FAQ) on Laundering to Decontaminate Wildland Fire Clothing

Equipment Technology Committee

Risk Management Committee

FAQ Now Available for Archiving Type 1 and Type 2 Incident Positions

Date: Aug 6, 2025
Questions? Please contact:
Incident and Position Standards Committee

To support the transition to Complex Incident Management (CIM), NWCG will archive all Type 1 and Type 2 Command and General Staff (C&G) position qualifications in January 2026, as outlined in NWCG Executive Board Memo 25-002. To assist with this transition, a new Frequently Asked Questions (FAQ) document is now available.

This resource answers common questions about the status of Type 1 and Type 2 qualifications, impacts to incident qualification management, training requirements, and resource ordering considerations. Review the full FAQ to learn more.

For additional information on CIM and the transition of C&G positions, see NWCG Executive Board Memos 23-005, 24-005, and 25-002, as well as the Incident Workforce and Development Group webpage.

References:

NWCG Type 1 & Type 2 Position Archiving FAQ

NWCG Executive Board Correspondence

Incident Workforce Development Group

Incident and Position Standards Committee

Incident Position Standards and the Next Generation Position Task Books Now Available for UASD, UASM, UASL and UASP

Date: July 31, 2025
Questions?  Please contact:
Interagency Fire Unmanned Aircraft Systems Subcommittee
 

NWCG is excited to announce that Incident Position Standards and the Next Generation Position Task Books are now available for all four Unmanned Aircraft Systems positions:

  • Unmanned Aircraft Systems, Data Specialist (UASD)
  • Unmanned Aircraft Systems, Manager (UASM)
  • Unmanned Aircraft Systems, Module Leader (UASL)
  • Unmanned Aircraft Systems Pilot (UASP)

The Performance Support Packages for these positions were developed as part of the Incident Performance and Training Modernization effort. These resources support trainees, qualified personnel, and evaluators in their respective roles.

Any changes to qualification pathways will take effect with the next update of the NWCG Standards for Wildland Fire Position Qualifications, PMS 310-1, scheduled for January 2026.

References:

NWCG Unmanned Aircraft Systems, Data Specialist Position Page

NWCG Unmanned Aircraft Systems, Manager Position Page

NWCG Unmanned Aircraft Systems, Module Leader Position Page

NWCG Unmanned Aircraft Systems Pilot Position Page